現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:以基本土壤特性評估土壤水份特徵曲線 [以論文名稱查詢館藏系統]
論文英文名稱:Estimation of SWCC for various Textures Soils from Soil Physical Properties [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
中文姓名:張育誠
英文姓名:Yu-Cheng Chang
研究生學號:93428029
學位類別:碩士
語文別:英文
口試日期:2006-07-15
論文頁數:151
指導教授中文名:魏敏樺
口試委員中文名:盧之偉;姚大鈞
中文關鍵詞:非飽和土壤基質吸力土壤水份特徵曲線PTFSWCC.
英文關鍵詞:unsaturated soilmatric suctionparticle size distributionSWCCPTF
論文中文摘要:土壤水份特徵曲線(soil-water characteristic curve, SWCC)對於非飽和土壤是一個重要的特性函數,由特定的基質吸力所對應於體積含水量之函數關係。此外,非飽和土壤存在於有關SWCC和水力特性,一般量測非飽和水力特性是昂貴且耗時又費力,可從較經濟的方法去取代評估SWCC,但在這之前必需建立屬於本地的SWCC之資料庫。實作SWCC實驗是比較冗長且乏味的,有幾個方法(Arya and Paris, 1981; Tyler and Wheatcraft, 1989 and Aubertin et al., 2003)可以去評估SWCC從一些基本的土壤性質,例如: 粒徑分佈曲線、體積密度、孔隙比和液性限度…等,這些評估的方法總稱為土壤轉換函數(pedo-transfer function, PTF)。
本研究探討八個PTFs方法有Gupta and Larson (1975)、Fredlund et al. (1997)、Vereecken et al. (1989)、Scheinost et al. (1997)、Arya and Paris (1981)、Tyler and Wheatcraft (1989)、Zhuang et al. (2001)和Aubertin (2003)等,使用去評估臺灣不同質地有SM、CL、CH、ML和MH等土壤,且與實驗的結果作比較。然而根據Gupta and Larson (1975), Arya and Paris (1981), Fredlund et al. (1997)和Scheinost et al. (1997) 此四種方法進行修正,使其在評估上可獲得較佳的SWCC曲線。
論文英文摘要:Soil water characteristic curve (SWCC) is an important function of unsaturated soil. It defines the volumetric water content corresponding to a particular suction in the soil. In addition, relationships exist between SWCC and hydraulic property of unsaturated soil; as a result conventional method used in measuring unsaturated hydraulic property, which is expensive, time consuming, and labor intensive, can be replaced by the more economical back analysis of the SWCC. However, before this can be done, it is necessary to have a database of the SWCC of local soils. Performing SWCC laboratory tests for all the local soils is tedious. Several methods (Arya and Paris, 1981; Tyler and Wheatcraft, 1989 and Aubertin et al., 2003) have been made to estimate the SWCC relationships from available soil properties such as particle-size distribution, bulk density, void rate and liquid limit. The estimation methods used are referred to as pedo-transfer function (PTF).
In this study, eight PTFs proposed by Gupta and Larson (1975), Fredlund et al. (1997), Vereecken et al. (1989), Scheinost et al. (1997), Arya and Paris (1981), Tyler and Wheatcraft (1989), Zhuang et al. (2001) and Aubertin (2003) have been used and analyzed for various Taiwan soils with different textures such as SM, CL, CH, ML and MH soils. The PTF estimation results were compared with the experimental SWCC results. Improvement has been made to the methods proposed by Gupta and Larson (1975), Arya and Paris (1981), Fredlund et al. (1997) and Scheinost et al. (1997) and better estimations of SWCC for the above soils have been obtained.
論文目次:摘 要 i
Abstract iii
Acknowledgements v
Table of Contents vii
List of Tables ix
List of Figures xi
Chapter 1 Introduction 1
1.1 General 1
1.2 Objectives of Study 2
1.3 Methodology 2
1.4 Layout of Thesis 3
Chapter 2 LITERATURE REVIEW 5
2.1 Introduction 5
2.2 Soil-Water Characteristic Curve (SWCC) 5
2.2.1 Definition 5
2.2.2 SWCC for various soil textures 10
2.2.2.1 Background 10
2.2.2.2 Unimodal Curves 11
2.2.2.3 Bimodal Curves 13
2.2.3 Representation of SWCC 14
2.3 Pedo-transfer functions (PTFs) 16
2.3.1 Point regression method 17
2.3.2 Function parameter regression method 17
2.3.3 Pyhsico-empirical model method 19
Chapter 3 Experimental Testing & Results 23
3.1 Introduction 23
3.2 Soil Physical Properties Tests 23
3.3 Pressure Plate Extractor Test 33
3.4 Salt Solution Method 36
3.5 BET Surface Area Measurement 41
Chapter 4 PTF Analysis 45
4.1 Introduction 45
4.2 Analysis Methods 45
4.2.1 Gupta and Larson Estimation Method (1975) 45
4.2.2 Arya and Paris Estimation Method (1981) 47
4.2.3 Vereecken et al. Estimation Method (1989) 49
4.2.4 Tyler and Wheatcraft Estimation Method (1989) 51
4.2.5 Scheinost Estimation Method (1997) 52
4.2.6 Fredlund Estimation Method (1997) 54
4.2.7 Zhuang Estimation Method (2001) 59
4.2.8 Aubertin Estimation Method (2003) 62
4.3 Analysis and Results 68
4.3.1 Comparison of Original PTFs Results 68
4.3.2 Modified PTF for all soils 88
4.3.2.1 Modified-Scheionst et al. 88
4.3.2.2 Modified-Gupta and Larson PTF 98
4.3.2.3 Modified-Arya and Paris PTF 103
4.3.2.4 Modified-Fredlund et al. PTF 106
Chapter 5 Sensitivity Analysis 111
5.1 Introduction 111
5.2 Comparison of air-entry values 111
5.3 Comparison of maximum slope of SWCC 113
5.4 Comparison of R2 results 115
5.5 Comparison of MD and RMSD results 118
5.6 Sensitivity analysis 120
Chapter 6 Conclusions and Recommendations 123
6.1 Conclusions 123
6.2 Recommendations 126
References 131
List of Symbols and Abbreviations 141
作 者 簡 介 151
論文參考文獻:[1] Aitchison, D.G. (1965). “Engineering concepts of moisture equilibria and moisture changes in soils.” Statement of the Review Panel, Ed., published in Moisture Changes in Soils Beneath Covered, p. 7-21.
[2] Alonso, E., Gens, A. and Josa, A. (1990). “A constitutive model for for partially saturated soils.” Geotechnique, Vol. 40(3), p. 405-430.
[3] Arya, L.M., and Paris, J.F. (1981). “A physico-empirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data.” Soil Science Society of America Journal, Vol. 45, p.1023-1030.
[4] Arya, L.M., Richter, J.C., and Davidson, S.A. (1982). “A comparion of soil moisture characteristic predicted by the Arya-paris model with laboratory-measured data.” Agristars Technology Report SM-L1-04247, JSC-17820, NASA-Johnson Space Center, Houston, Tex.
[5] Arya, L.M., Leij, F.J., van Genuchten, M.Th. and Shouse, P.J. (1999). “Scaling parameter to predict the soil-water characteristic from particle-size distribution data.” Soil Science Society of America Journal, Vol. 63, p.510-519.
[6] ASTM. D422-63 (2002). “Standard Test Method for Particle-Size Analysis of Soils.” West Conshohocken. Pa.
[7] ASTM. D854-98 (2002). “Standard Test Method for Specific Gravity of Soils.” West Conshohocken. Pa.
[8] ASTM. D2216-98 (2002). “Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil.” West Conshohocken. Pa.
[9] ASTM. D2487-98 (2002). “Standard Classification of Soils for Engineering Purposes (Unified Soil Classification System).” West Conshohocken. Pa.
[10] ASTM. D4318-95 (2002). “Standard Test Method for Liquid Limit, and Plasticity Index of Soils.” West Conshohocken. Pa.
[11] ASTM. D6836-02 (2002). “Standard Methods for Determination of the Soil Water Characteristic Curve for Desorption Using a Hanging Column, Pressure Extractor, Chilled Mirror Hygrometer, and/or Centrifuge.” West Conshohocken. Pa.
[12] ASTM. D5298-94 (2002). “Standard Methods for Measurement of Soil Potential (Suction) Using Filter Paper.” West Conshohocken. Pa.
[13] Aubertin, M., Ricard, J, -F., and Chapuis, R.P. (1998). “A predictive model for the water retention curve: application to tailings from hard-rock mines.” Canadian Geotechniical Journal, Vol. 35, p.55-69.
[14] Basile, A., and G.D., Urso. (1997). “Experimental corrections of simplified methods for predicting water retention curves in clay-loamy soils from particle-size determination.” Soil technol. Vol. 10, p. 261-272.
[15] Barbour, S. L. (1998). “19th Canadian Geotechnical Colloquium: The soil-water characteristic curve: a historical perspective.” Can. Geotech. J., Vol. 35, p. 873-894.
[16] Bowles, J.E. (1984). “Physical and geotechnical properties of soils 2nd ed.” McGraw-Hill Book Company, New York.
[17] Broods, R. H. and Corey, A. T. (1964). “Hydraulic Properties of Porous Media.” Hydro. Paper No. 3, Colorado State Univ., Fort Collins, Colo., 27.
[18] Bussiere, B. Aubertin, M., and Chapuis, R.P. (2003). “The behavior of inclined covers used as oxygen barrier.” Canadian Geotechnical Journal, Vol. 40: 512-535.
[19] Campbell, G.S. (1974). “A simple method for determining unsaturated conductivity from moisture retention data.” Soil Sci. Vol. 117, p. 311-314.
[20] Croney, J. D. Coleman, (1961). “Pore Pressure and Suction in Soil.” in Proc. Conf. Pore Pressure and Suction in Soils. London: Butterworths, p. 31-37.
[21] De Bruyn, C. M. A., Collins, L. F., & Williams, A. A. B. (1957). “The specific surface, water affinity, and potential expansiveness of clays.” Clay Miner. Bull, 3, p. 120-128.
[22] Camapum de Carvalho, J., Guimaraes, R.C., and Pereira, J. H. F. (2002). “Courbes de retention d’eau d’un profil d’alteration.” Proc., 3rd Int. Conf. on Unsaturated Soils, Recife, Brazil, p. 289-294 (in French).
[23] Chapuis, R.P., and Aubertin, M. (2001). “A simplified method to estimate saturated and unsaturated seepage through dikes under steady state conditions.” Canadian Geotechnical Journal, Vol. 38(6), p. 1321-1328.
[24] Cosby, B.J., G.M. Hornberger, R.B. Clapp, and T.R. Ginn. (1984). “Astatictical exploration of the
[25] Durner, W. (1994). “Hydraulic conductivity estimation for soils with heterogeneous pore structure.” Water Resour. Res., Vol. 30(2), p. 211-223.
[26] Farrar, D. M. and Coleman, J. D. (1967) “The Correlation of Surface Area with Other Properties of Nineteen British Clay Soils.” Journal of Soil Science, Vol. 18, No. 1, p.118-124.
[27] Fernando, A. M. Marinho. (2005). “Nature of Soil-Water Characteristic Curve for Plastic Soils.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 131, p.654-661.
[28] Fredlund, M.D., Wilson, G.W., and Fredlund, D.G. (2002). “Use of the grain-size distribution for estimation of the soil-water characteristic curve.” Can. Geotech. J, Vol. 39, p.1103-1117.
[29] Fredlund, D.G.. (2000). “The 1999 R.M. Hardy Lecture: The implementation of unsaturated soil mechanics into geotechnical engineering.” Canadian Geotechnical Journal, Vol. 37, p. 963-986.
[30] Fredlund, D. G. and Rahardjo, H. (1993). “Soil Mechanics for Unsaturated Soils.” John Wiley and Sons, New York.
[31] Fredlund, D. G. and Xing, A. (1994). “Equations for the Soil-Water Character Curve.” Canadian Geotechnical Journal, Vol. 31, p.521-532.
[32] Fredlund, D. G., Xing, A., Fredlund, M. D., and Barbour, S. L. (1995). “The Relationship of the Unsaturated Soil Shear Strength to the Soil-Water Characteristic Curve.” Canadian Geotechnical Journal, Vol. 32, p.440-448.
[33] Fredlund, M.D., Fredlund, D.G., and Wilson, G.W. (1997). Prediction of the soil-water characteristic curve from grain-size distribution and volume-mass properties. In Proceedings of the 3rd. Brazilian Symposium on Unsaturated Soils, Rio de Janeiro, 22-25 April 1997, Vol. 1, p. 13-23.
[34] Gilson de, F. N. Gitirana, Jr. and Delwyn G. Fredlund. (2004). “Soil-Water Characteristic Curve Equation with Independent Properties.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 130, p.209-212.
[35] Gupta, S.C. and Larson, W.E. (1979). “Estimating Soil Water Retention Characteristics From Particle Size Distribution, Organic Matter Percent, and Bulk Density.” Soil Water Retention Characteristics, Vol. 15, NO. 6, p.1633-1635.
[36] Haverkamp, R., and Parlange, J.Y. (1986). “Predicting the water-retention curve from particle size distribution: 1. Sandy soils without organic matter.” Soil Science, Vol.142, p.325-339.
[37] Harrison, B.A., and Blight, G.E. (2000). “The use of indicator tests to estimate the drying leg of the soil-water.” Asian Conference on Unsaturated Soils (H Rahardjo, DG Toll, EC Leong, eds.), Balkema, Rotterdam, p. 323-327.
[38] Husz, G. (1967). “The determination of pF-curves from texture using multiple regressions. (In German.) Z. Pflanzenernahr. Dung. Bodenkd. Vol. 116(2), p. 23-29.
[39] Konrad, J.-M., and Roy, M. (2000). Flexible pavements in cold regions: a geotechnical perspective. Canadian Geotechnical Journal, Vol. 37(3): 689-699.
[40] Kovaca, G. (1981). “Seepage hydraulis. Elsevier Science Publishers, Amsterdam.
[41] Krahn and Fredlund, D. G. (1972) “On Total Matric and Osmotic Suction,” J. Soil Sci.” Vol. 114, no. 5, p. 339-348.
[42] Lapierre, C., Leroueil, S., and Locat, J. (1990). “Mercury intrusion and permeability of Louiseville clay.” Can, Geothech. J., Vol. 27, p. 761-773.
[43] Leong, E. C. and Rahardjo, H. (1997). “Review of Soil-Water Characteristic Curve Equations.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, p.1106-1117.
[44] Limin Zhang, M. and Qun Chen. (2005). “Predicting Bimodal Soil-Water Characteristic Curves.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 131, p.666-670.
[45] Mbonimpa, M., Aubertin, M., Chapuis, R. P. and Bussiere, B. (2002). “Practical Pedotransfer Functions for Estimating the Saturated Hydraulic Conductivity.” Geotechnical and Geological Engineering, Vol. 20, p.235-259.
[46] Meyer, P.D., and Gee, G.W. (1999). “Advective-diffusion contaminant migration in unsaturated sand and gravel.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE 122(12), p. 965-975.
[47] Mishra, S., J.C. Parker, and N. Singhal. (1989). “Estimation of soil hydraulic properties and their uncertainty from particle-size distribution data.” J. Hydrol. (Amsterdam) Vol. 108, p. 1-18.
[48] Mitchell, J.K. (1976). Fundamentals of soil behavior, Wiley, New York.
[49] Muhunthan, B. (1991). “Liquid limit and surface area of clays.” Geotechnique, Vol. 41, No. 1, p.135-138.
[50] Nicolaeva, S.A., Y.A. Pachepsky, R.A. Shcherbakov, and A.I. Shcheglow. (1986). “Modelling of moisture regime for ordinary Chernozems.” Pochvovedenie Vol. 6, p. 52-59.
[51] Nicolaeva, S.A., Y.A. Pachepsky, R.A. Shcherbakow, and A.I. Shcheglov. (1989). “Modelling of moisture regime for ordinary Chernozems.” Pochvovedenie Vol. 6, p. 52-59.
[52] Pachepsky, Y., R.A. Shcherbakov, G. Varallyay, and K. Pajkai. (1982). “Statistical analysis of water retention relations with other physical properties of soils.” Pochvovedenie Vol. 2, p. 42-52.
[53] Puckett, W.E., J.H. Dane, and B.F. Hajek. (1985). “Prediction of soil water properties for hydrologic modeling.” p. 293-299. In E. Jones and T.J. Ward (ed.) watershed Manage. Eighties. Proc. Symp. ASCE, Denver, CO. 30 Apr. -2 May 1985. ASCE, New York.
[54] Rawls, W.J., and Brackensiek, D.L. (1982). “Estimating soil water retention from soil properties.” Journal of Irrigation and Drainage Division, ASCE Vol. 108, p. 166-171.
[55] Rawls, W.J., and Brakensiek, D.L. (1985). “Prediction of soil water properties for hydrologic modeling.” In Watershed anagement in the Eighties, Proceedings of a Symposium Sponsored by the Committee on Watershed Management, I & D Division, American Society of Civil Engineers, Denver, Colo., 30 April – 1 May 1985. Edited by E.B. Jones and T.J. Ward. American Society of Civil Engineers, New York, p. 293-299.
[56] Rawls, W.J., and Brakensiek, D.L. (1989). “Estimation of soil-water retention and hydraulic properties.” In Unsaturated flow in hydrologic modeling theory and practice. Edited by H.J. Morel-Seytoux. Kluwer Academic Publishers, Beltsville, Md., p. 275-300.
[57] Rawl, W.J., Pachepsky, and Y., Shen, M.H. (2001). “Testing soil water retention estimation with the MUUF pedotransfer model using data from the southern United States.” Journal of Hydrology, Vol. 251, p.177-185.
[58] Rassam, D.W., and Williams, D.J. (1999). “A relationship dcscribing the shear strength of unsaturated soils.” Canadian Geotechnical Journal, Vol. 36(2), p. 363-368.
[59] Rampino, C., Mancuso, C., and Vinale, F. (2000). Experimental behaviour and modeling of an unsaturated compacted soil.” Canadian Geotechnical Journal, Vol. 37(4), p. 748-763.
[60] Renger, M. (1971). “ The estimation of pore size distribution from texture, organic matter content and bulk density. Z. Kluturtech. Flurbereinig. Vol. 130, p. 53-67.
[61] Richards, G.. (1965). “Measurement of the Free Energy of soil Moisture by the Psychrometric Technique Using Thermistors.” In Moisture Equilibria and Moisture changes in Soils Beneath Covered Areas, A Symp. In Print. Australia: Butterworths, 1965, p. 39-46.
[62] Schuh, W.M., R.L. Cline, and M.D. Sweeny. (1988). “ Comparison of a laboratory procedure and a textural model for predicting in situ soil water retention. Soil Sci. Soc. Am. J. Vol. 52, p. 1218-1227.
[63] Schaap, M.G., and Leij, J.F. (1998). “Database related accuracy and uncertainty of pedotransfer functions.” Soil Science, Vol. 163, p.765-779.
[64] Scheinost, A.C., Sinowski, W., and Auerswald, K. (1997). “Regionalization of soil water retention curves in a highly variable soilscape, I. Developing a new pedotransfer function.” Geoderma, Vol. 78, p.129-143.
[65] Smith, G.N. (1990). “Elements of soil mechanics. 6th ed.” BSP Professional Books, Oxford.
[66] Smith, R.E. (1992). “Opus: An integrated simulation model for transport of non-point source pollutants at the field scale.” Vol. 1, Documentation. USDA-ARS Publ. ARS-98. U.S. Gov. Print. Office, Washington, DC.
[67] Sillers, W.S. (1996). “Mathematical representation of the soil-water characteristic curve.” M.Sc. thesis, Department of Civil Engineering, University of Saskatchewan, Saskatoon, Sask.
[68] Sillers, W. S., Fredlund, D. G., and Zakerzadeh, N. (2001). “Mathematical attributes of some soil-water characteristic models.” Geotech. Geologic. Eng., Vol. 19, p. 243-283.
[69] Simms, P. H., and Yanful, E. K. (2000). “Estimation of a soil-water characteristic curve of a clayey till using measured pore-size distribution.” Proc., 5th Int. Symp. On Environmental Getechnology and Global Sustainable Development (CD-ROM) Belo Horizonte, Brazil, p. 314-276.
[70] Sridharan, A., Rao, S.M. and Murthy, N.S. (1986) “Liquid limit of Montmorillonite soils, Technical Note, Geotechnical Testing Journal, Vol. 9, No. 3, p. 156-159.
[71] Sridharam, A., Rao, S. M., & Murthy, N. S. (1988). Liquid limit of kaolinitic soils.” Geotechnique Vol. 38, No. 2, p. 191-198.
[72] Suzuki, H. (2000). “Reconsideration of suction controlled techniques by thermodynamics theory of water in soil.” Asian Conference on Unsaturated Soils (H Rahardjo, DG Toll, EC Leong, eds.), Balkema, Rotterdam, p. 159-162.
[73] Tanaka, H. and Locat, J. (1999). “A Microstructural Investigation of Osaka Bay Clay: the impact of Microfossils on its Mechanical Behaviour.” Canadian Geotechnical Journal, Vol. 36, No. 3, p.493-508.
[74] Thu, T.M., and Fredlund, D.G. (2000). “modeling subsidence in Hanoi City area, Vietnam. Candaian Geotechnical Journal, Vol. 37(7), p. 621-637.
[75] Tietje, O. and Tapkenhinrichs M. (1993). “Evaluation of Pedo-Transfer Functions.” Soil Sci. Soc. Am. J., Vol. 57, p.1088-1095.
[76] Turcotte, D.L. (1986). “Fractals and fragmentation. J. Geophys. Res. Vol. 91, p. 1921-1926.
[77] Tyler, S.W., and Wheatcraft, S.W. (1989). “Application of fractal mathematics to soil water retention estimations.” Soil Science Society of America Journal, Vol. 53(4), p.987-996.
[78] Vanapalli, S. K., Fredlund, D. G., and Pufahl, D. E. (1999). “The influence of soil structure and stress history on the soil-water characteristics of compacted till.” Geotechnique, Vol. 49(2), 143-159.
[79] Vanapalli, S.K., Fredlund, D.G., Pufahl, D.E., and Clifton, A.W. (1996). Model for the prediction of shear strength with respect to soil suction.” Canadian Geotechnical journal, Vol. 33, p. 379-392.
[80] van Genuchten, M. T. (1980). “A Closed-Form Equation for Predicting Hydraulic Conductivity of Unsaturated Soils.” Journal of Soil Science Society of America, Vol. 44, p.892-898.
[81] Vereecken, H., Maes, J., Feyen, J., and Darius, P. (1989). “Estimating the soil moisture retention characteristic from texture, bulk density, and carbon content.” Soil Science, Vol. 148(6), p.389-403.
[82] Williams, W.R.D., Ahuja, L.R., and Naney, J.W. (1992). “Comparison of methods to estimate soil water characteristics from texture, bulk density, and limited data.” Soil Science, Vol. 153, p.172-84.
[83] Williams, J.R., Prebble, E., Williaams, W.T., Hignett, C.T., (1983). “The influence of texture, structure and clay mineralogy on the soil moisture characteristic.” Aust. J. Soil Res. Vol. 21, p. 15-31.
[84] Yong, R.N. (2001). “Geoenvironmental engineering – Contaminated soils, Pollutant fate, and mitigation.” CRC Press, Boca Raton, Fla.
[85] Zhuang, J., Jin, Y., and Miyazaki, T., (2001). “Estimating water retention characteristic from soil particle-size distribution using a non-similar media concept.” Soil Science, Vol. 166(5), p.308-320.
[86] Zhang, L. M., and Chen, Q., (2005). “Predicting Bimdodal Soil-Water Characteristic Curves.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131, p. 666-670.
[87] 朱信安(2004),林口台地非飽和紅土特性之研究,碩士論文,國立臺北科技大學土木與防災研究所,臺北。
[88] 徐紹斌(2004),應用在氮氧化物還原反應之高性能 ZSM-5 載體 Pd-Co 觸媒研究,碩士論文,大同大學化學工程研究所,臺北。
[89] 許俊森(2006),林口台地非飽合紅土滲透性質之研究,碩士論文,國立臺北科技大學土木與防災研究所,臺北。
[90] 張文濤(2004),基質吸力對於邊坡穩定性之研究-以林口台地為例,碩士論文,國立臺北科技大學土木與防災研究所,臺北。
[91] 游淳名(2005),非飽和紅土剪力強度之研究-以林口台地為例,碩士論文,國立臺北科技大學土木與防災研究所,臺北。
論文全文使用權限:同意授權於2007-08-25起公開