現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:利用能量耗散觀念評估鋼筋混凝土柱之韌性強度 [以論文名稱查詢館藏系統]
論文英文名稱:Evaluation of Ductility of Reinforced Concrete Columns Based on Energy Dissipation [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
中文姓名:陳志峰
英文姓名:Chih-Feng Chen
研究生學號:93428011
學位類別:碩士
語文別:中文
口試日期:2007-01-30
論文頁數:104
指導教授中文名:張順益
口試委員中文名:宋裕祺;廖文義
中文關鍵詞:鋼筋混凝土柱韌性容量
英文關鍵詞:Reinforced Concrete ColumnsDuctility
論文中文摘要:現今鋼筋混凝土柱的極限強度一般是指利用反覆載重試驗(cyclic loading test)所獲得之遲滯迴圈中,其最大側向力的80%,此方法為一個約定俗成的方法並無任何的理論背景。因此本論文將利用能量耗散觀念對鋼筋混凝土柱之韌性強度研擬出新的評估方法。此評估方法為計算反覆載重試驗所獲得之每一個遲滯迴圈的面積,此面積即為鋼筋混凝土柱在該循環(cycle)所能消耗的能量,將各個循環所能消耗的能量依序繪成能量消散容量圖。另一方面,如將各循環的能量除以該循環所對應之反覆載重的總位移,即可得到各循環之單位位移所能消散的能量,在本文中將簡稱為單位位移消散能量容量,而當此單位位移消散能量容量達最大值時,此時之試體將視為已達破壞。因而此循環之最大側向力與最大位移即為極限強度與極限位移。至於降伏位移的決定則由以下的方式來決定,利用試體達極限強度時,其所能消散的能量的某一百分比,而此一百分比能消散的能量即定義為鋼筋混凝土柱降伏時所能消散的能量,因而降伏時所能消散的能量所對應之循環的最大位移即為降伏位移。在求得極限位移及降伏位移之後,即可計算韌性強度。為了驗證本論文所研擬評估方法的正確性,將利用搜集的反覆載重實驗資料,分別以先前慣用的方法以及本研究所提出的方法來分別求得其極限強度,隨後再進行比較以得知其差異性,本研究係以能量消散的觀念來研擬出一套有系統計算韌性強度的方法。
論文英文摘要:It is accepted that the ultimate lateral force of reinforced concrete columns is the 80% maximum lateral force of hysteresis loops evaluated by the cyclic loading test. However, this method is not theoretically supported. Thus, this study aimed to create a new method to evaluate ductility of reinforced concrete columns by applying the concept of cycle energy dissipation. Our method was to count the area of each hysteresis loop derived from the cyclic loading test, and the area represented the energy of reinforced concrete columns dissipated in that cycle. Then, the figures of cycle energy dissipation capacity were made orderly according to the energy dissipated in each cycle. Besides, the term "unit displacement dissipation cycle energy capacity" in this study was the energy dissipated in unit displacement of each cycle. When the unit displacement dissipation cycle energy capacity became maximal, the specimen was regarded destroyed. Therefore, the homologous maximum lateral force and maximum displacement individually represented ultimate lateral force and ultimate displacement. Moreover, when the specimen bore ultimate lateral force, a certain percentage of the dissipating energy was defined as the energy that reinforced concrete columns could dissipate when yielding. As a result, the displacement of the cycle homologizing the dissipating energy when yielding became yield displacement. After getting ultimate displacement and yield displacement, were attained the ductility could be evaluated. In order to test the validity of the new method, the data of cyclic loading test were collected and analyzed to get the ultimate lateral force. The accepted method and our method were both applied and then the comparison of two methods was made to get the differences. This study intended to create a systematic method to evaluate ductility strength.
論文目次:中文摘要 i
英文摘要 ii
誌 謝 iv
目 錄 v
表目錄 vi
圖目錄 vii
第一章 緒 論 1
1.1 研究目的及動機 1
1.2 文獻回顧 2
1.3 研究內容 3
第二章 鋼筋混凝土柱的韌性 8
2.1 實驗方式 8
2.1.1 反覆載重試驗 9
2.1.2 側向力修正 9
2.1.3 韌性 10
2.2 理論分析流程介紹 12
2.2.1 彎矩曲率法 12
2.2.2 韌性計算 14
第三章 能量評估法 26
3.1 計算面積 26
3.2 極限強度與極限位移 27
3.3 降伏位移 28
第四章 能量評估法之驗證 34
4.1 極限強度 34
4.2 降伏位移 36
4.3 韌性強度 37
第五章 結 論 100
參考文獻 102
論文參考文獻:[1] Chang S.Y. and Tsai I.C. (2005), “Experimental study of as-built and composite materials retrofitted reinforced concrete columns,” Canadian Journal of Civil Engineering, Vol. 32 No.2,pp 454-460,2005 (NSC-91-2711-3-319-200).
[2] Fujii M. Kobayashi K. Miyagawa T. Inoue S. and Matsumoto T. (1988), “A study on the application of a stress-strain relation of confined concrete,” Proc.,JCA Cement and Concrete,Vol. 42,Japan Cement Assn.,Tokyo,Japan,pp. 311-314.
[3] Fujikura S. Kawashima K. Shoji G. Zhang J. and Takemura H. (1998), “Strength and Ductility of Reinforced Concrete Columns with Interlocking Tie and Cross Ties,” Report No. TIT/EERG 98-9,Tokyo Institute of Technology,Tokto,Japan.
[4] Fujikura S. Kawashima K. Shoji G. Zhang J. and Takemura H. (2000), “Effect of the Interlocking Ties and Cross Ties on the Dynamic Strength and Ductility of Rectangular Reinforced Concrete Bridge Columns,” Journal of Structural Mechanics and Earthquake Engineering, No. 640/I-50, JSCE,Japan.
[5] Hakamada F. (1997), “Experimental Study on Retrofitting of Reinforced Concrete Slab Column and Reinforced Concrete Column by Carbon Fiber Reinforced Plastic Sheet,” Proceedings of JCI Symposium on Seismic Retrofitting Techniques for Concrete Structures,pp.155-164,Japan.
[6] Hoshikuma J. Kawashima K. Nagaya K. and Taylor A.W. (1997), “Stress-strain for concrete reinforced concrete in bridge piers,” J. Struct. Eng. ASCE, 6(4), pp.453-633.
[7] Kent D.C. and Park R. (1971), “Flexural members with confined concrete,” Journal of the structural.Division.ASCE,97(7),pp. 1969-1990.
[8] Muguruma H. Watanabe S. Tanaka S. Sakurai K. and Nakaruma E. (1978), “A study on the improvement of bending ultimate strain of concrete,” J. Struct. Engrg.,Tokyo,Japan, 24,pp. 109-116.
[9] Muguruma H. Watanabe S. Tanaka S. Sakurai K. and Nakaruma E. (1978), “A stress-strain model of confined concrete,” Proc.,JCA Cement and Concrete,Vol. 34,Japan Cement Assn.,Tokyo,Japan,pp. 429-432.
[10] Mander J.B. Priestley M.J.N. and Park r. (1988), “Theoretical stress-strain model for confined concretw,” Journal of the structural.Division.ASCE,114(8),pp 1804-1826.
[11] Mander J.B. Priestley M.J.N. and Park r. (1988), “Observed stress-strain model behavior of confined concretw,” Journal of the structural.Division.ASCE,97(7),pp 1969-1990.
[12] Mirza S.A.and MacGregor J.G. (1997), “Variability of mechanical properties of reinforcing bars,” Journal of the structural.Division.ASCE,105(5),pp. 921-937.
[13] Maekawa Y. Fujiwara N. Tasaka H. Inoue S. and Hayashida M. (1998), “Influence of Peeling Steel Shell on Strength and Ductility of Retrofitted Reinforced Concrete Columns by Steel Jacketing,” Bridge and Foundation Engineering,pp.35-40,Japan.
[14] Park R. Priestley M.J.N. and Gill W.D. (1982), “Ductility of square confined concrete columns,” Journal of the structural.Division.ASCE,108(4),pp. 929-950.
[15] Priestley M.J.N. and Park (1987), “Strength and Ductility of Concrete Bridge Columns under Seismic Loading, ” ACI Structural Journal,84(1),pp. 61-75.
[16] Sheikh S.A. and Uzumeri S.M. (1980), “Strength and ductility of tied concrete columns,” Journal of the structural.Division.ASCE,106(5),pp. 1079-1102.
[17] Sheikh S.A. and Uzumeri S.M. (1982), “Analytical model for concrete confinement in tied columns,” Journal of the structural.Division.ASCE,108(12),pp. 2703-2722.
[18] Saatcioglu M. and Razvi S.R. (1992), “Strength and ductility of confined concrete, ” Journal of the structural.Division.ASCE,118(6),pp. 1590-1607.
[19] Takemura H. and Kawashima K. (1997), “Effect of loading hysteresis on ductility capacity of reinforced bridge piers,” Journal of Structrral Engineering,Vol. 43A,pp.849-858,Japan.
[20] Zahn F.A. Park R. and Priestley M.J.N. (1990), “Flexural strength for ductility of circular hollow reinforced concrete columns without confinement on inside face, ” ACI Structural Journal,vol.87,No.2,pp. 156-166.
[21] 李景亮、梁英文,「結構耐震設計」,文笙書局,民國83年8月。
[22] 宋奕潁(2001),「碳纖維複合材料(CFRP)於圓形橋柱剪力破壞耐震補強之研究」,碩士論文,國立臺北科技大學土木與防災研究所,台北,2001。
[23] 宋裕祺(2003),「以結構性能為目標的橋梁耐震設計與耐震能力評估」,博士論文,國立臺灣大學土木工程學研究所,台北,2003。
[24] 宋裕祺、蔡益超,「橋梁結構性能耐震設計」,結構工程期刊第十九卷,第41~73頁。
[25] 張岳琦(1998),「快速擬動態試驗之誤差傳播分析」,碩士論文,國立臺灣大學土木工程學研究所,台北,1998。
[26] 張宏輔(1999),「鋼筋混凝土矩形柱橋柱耐震分析與FRP補強之研究」,碩士論文,國立臺灣大學土木工程學研究所,台北,1999。
[27] 黃震興、郭苗宜(2000),「RC橋柱之剪力與主筋搭接耐震補強」,國家地震工程研究中心, NCREE-00-05。
[28] 葉勇凱、莫詒隆、楊宙燕(2000),「中空鋼筋混凝土實尺寸橋柱之韌性、剪力強度與補強試驗(二)」,國家地震工程研究中心, NCREE-00-025。
[29] 蔡益超、賴彥魁(2000),「中空鋼筋混凝土橋柱之韌性、剪力強度與補強之理論分析(Ⅲ)」,國家地震工程研究中心, NCREE-00-022。
[30] 鄭錦銅、楊智雄、葉勇凱(2001),「中空橋柱災後修復之耐震試驗研究」,國家地震工程研究中心, NCREE-01-019。
[31] 鍾立來、吳賴雲、余保憲、王文財、張俊傑、廖振宏(2002),「新舊鋼筋混凝土橋柱耐震行為之試驗研究」,國家地震工程研究中心, NCREE-02-021。
論文全文使用權限:不同意授權