現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:利用瞬時非線性變化程度參數評估逐步積分法的非線性數值特性 [以論文名稱查詢館藏系統]
論文英文名稱:Nonlinear Evaluation of Step-by-step Integration Method Using Instantaneous Degree of Nonlinearity [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
中文姓名:廖迪峰
英文姓名:Ti-Feng Liao
研究生學號:93428004
學位類別:碩士
語文別:中文
口試日期:2007-01-29
論文頁數:71
指導教授中文名:張順益
口試委員中文名:吳俊霖;林主潔
中文關鍵詞:逐步積分法HHT- 積分法瞬時非線性度收斂度
英文關鍵詞:step-by-step integration methodHHT- integral methodinstantaneous degree of nonlinearitystep degree of convergence
論文中文摘要:在結構系統的動態歷時分析中,使用逐步積分法早就已經成為非常普遍的方式,對於使用逐步積分法來求解線性結構系統的數值特性評估方法已經發展的非常完備,但是卻無法直接應用於非線性結構系統。在先前的論文之中已探討過使用一個定義名為單步非線性度(step degree of nonlinearity)的參數來描述結構勁度在積分時間步長內的變化情形,但其缺點是非線性變化的極值不易評估,因為此法的非線性變化程度與積分時間步長有密切的關係。而本論文則是使用定義名為瞬時非線性度(instantaneous degree of nonlinearity)的另一種新參數,這個方法的非線性變化極值是由材料的性質所控制,所以並不會因為積分時間步長的挑選而有太大的影響,故較易掌握結構的非線性變化程度。加入這個新參數之後,我們可以用線性系統的評估方法求解非線性結構系統的數值特性、進行非線性的數值特性分析,並探討此積分方法在結構系統下的數值消散與非線性變化程度的關係。在實際應用的時候也因為使用之前的方法來評估非線性變化程度的極值比較難,以至於挑選積分時間步長也較不易,而此法的非線性變化程度極值較易評估,所以挑選積分時間步長也會比較容易。
論文英文摘要:Since step-by-step integration methods have become widely used in the inelastic dynamic analysis, it is very important to assess their numerical characteristics in practical applications. Although the evaluation technique for evaluating the numerical properties of a step-by-step integration method in the solution of linear elastic systems has been well-developed it may not be directly applied to inelastic systems. The previous study has already probed into using step degree of nonlinearity parameter that describe the variation of stiffness in time step, but its shortcoming is that the extreme value of nonlinearity is difficult to assess, because the step degree of nonlinearity parameter and time step are close relations. In this paper, another kind of new parameter is used and defined as instantaneous degree of nonlinearity. The extreme value of this method is controlled by nature of material. After joining this new parameter, we can explore the numerical properties of the aforementioned dissipative integration methods for nonlinear elastic systems. Because the extreme value does not change with different time step, it will be easier to select the time step.
論文目次:中文摘要 i
英文摘要 ii
誌 謝 iii
目 錄 iv
圖目錄 v
第一章 緒 論 1
1.1 研究動機與目的 1
1.2 文獻回顧 3
1.3 研究內容概述 4
第二章 逐步積分法 6
2.1 逐步積分法簡介 6
2.2 HHT- 積分法 7
2.3 HHT- 積分法之線性數值特性 8
第三章 逐步積分法之非線性數值特性及評估 14
3.1 HHT- 積分法推導與數值特性 14
3.2 非線性度之比較 22
第四章 逐步積分法之數值模擬 30
4.1 數值釋例一 30
4.1.1 受到簡諧荷重之兩層剪力屋架 31
4.1.2 自由振動之兩層剪力屋架 33
4.2 數值釋例二 34
4.2.1 給定初始速度之單自由度系統 34
4.2.2 給定初始位移之單自由度勁度硬化 35
4.2.3 給定初始位移之單自由度勁度軟化 36
4.3 數值釋例三 37
第五章 結論 67
參考文獻 68
論文參考文獻:[1] Bathe K.J. and Wilson E.L., “Stability and Accuracy Analysis of Direct Integration Methods,” Earthquake Engineering and Structural Dynamics, Vol. 1, pp. 283-291, 1973.
[2] Belytschko T. and Hughes T.J.R., Computational Methods for Transient Analysis, Elsevier Science Publishers B.V., North-Holland, 1983.
[3] Belytschko T. and Schoeberle D.F., “On the Unconditional Stability of An Implicit Algorithm for Nonlinear Structural Dynamics,” Journal of Applied Mechanics, Vol. 17, pp. 865-869, 1975.
[4] Burden R.L. and Faires J.D., Numerical Analysis, PWS-KENT Publishing Company, Boston, 1989.
[5] Chang S.Y., “A Series of Engergy Conserving Algorithms for Structural Dynamics,” Journal of the Chinese Institute of Engineers, Vol. 19, No. 2, pp. 219-230, 1996.
[6] Chang S.Y., “Explicit Pseudodynamic Algorithm with Unconditional Stability,” Journal of Engineering Mechanics, ASCE, Vol. 128, No.9, pp. 935-947, 2002.
[7] Chang S.Y., “Improved Numerical Dissipation for Explicit Methods in Pseudodynamic Tests,” Earthquake Engineering and Structural Dynamics, Vol. 26, pp. 917-929, 1997.
[8] Chang S.Y., “Integrated Equations of Motion for Direct Integration Methods,,” Structural Engineering and Mechanics, An International Journal , Vol. 13, No.5, pp. 569-589, 2002
[9] Chopra A.K., Dynamics of Structures, Prentice Hall, 2nd Edition, 2001.
[10] Chung J. and Hulbert G.M., “A Time Integration Algorithm for Structural Dynamics with Improved Numerical Dissipation: The Generalized-a Method.” Journal of Applied Mechanics, Transactions of the ASME, Vol. 60, pp. 371-375, 1993.
[11] Clough R.W. and Penzien J., Dynamics of Structures, McGraw-Hill, Inc, International Editions, 1993.
[12] Dahlquist G., “A Special Stability Problem for Linear Multistep Methods,” BIT, 3, pp. 27-43, 1963.
[13] Dobbs M.W., “Comments on ‘Stability and Accuracy Analysis of Direct Integration Methods,’ by Bathe and Wilson,” Earthquake Engineering and Structural Dynamics, Vol. 2, pp. 295-299, 1974.
[14] Goudreau G.L. and Taylor R.L., “Evaluation of Numerical Integration Methods in Elasto- dynamics,” Computer Methods in Applied Mechanics and Engineering, Vol. 2, pp. 69-97, 1972.
[15] Hilber H.M. and Hughes T.J.R., “Collocation, Dissipation, and ‘Overshoot’ for Time Integration Schemes in Structural Dynamics,” Earthquake Engineering and Structural Dynamics, Vol. 6, pp. 99-118, 1978.
[16] Hilber H.M., “Analysis and Design of Numerical Integration Methods in Structural Dynamics.” Report No. EERC 76-29, Earthquake Engineering Research Center, University of California, Berkeley, CA, 1976.
[17] Hilber H.M.,Hughes T.J.R., and Taylor R.L., “Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics,” Earthquake Engineering and Structural Dynamics, Vol. 5, pp. 283-292, 1977.
[18] Houbolt J.C., “A Recurrence Matrix Solution for the Dynamic Response of Elastic Aircraft,” Journal of the Aeronautical Sciences, Vol. 17, pp. 540-550, 1950.
[19] Hughes T.J.R., “Stability, Convergence and Growth and Decay of Energy of the Average Acceleration Method in Nonlinear Structural Dynamics,” Computer & Structures, Vol. 6, pp. 313-324, 1976.
[20] Hughes T.J.R., The Finite Element Method, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1987.
[21] Krieg R.D., “Unconditional Stability in Numerical Time Integration Methods,” Journal of Applied Mechanics, Vol. 40, pp. 417-421, 1973.
[22] Newmark N.M., “A Method of Computation for Structural Dynamics,” Journal of Engineering Mechanics Division, ASCE, Vol. 85, pp. 67-94, 1959.
[23] Ortega J.M., Numerical analysis – A second course, Academic Press, New York, 1972.
[24] Park K.C., “An Improved Stiffly Stable Method for Direct Integration of Nonlinear Structural Dynamic Equations,” Journal of Applied Mechanics, Vol. 42, pp. 464-470, 1975.
[25] Shing P.B. and Mahin S.A., “Elimination of Spurious Higher-Mode Response in Pseudodynamic Tests.” Earthquake Engineering and Structural Dynamics, Vol. 15, pp. 425-445, 1987.
[26] Strang G., Linear Algebra and Its Applications, Harcourt Brace Jovanovich, San Diego, 1986.
[27] Wilson E.L., “A Computer Program for the Dynamic Stress Analysis of Underground Structures,” SESM Report No. 68-1, Division Structural Engineering and Structural Mechanics, University of California, Berkeley, 1968.
[28] Wilson E.L., I. Farhoomand, and K.J. Bathe, “Nonlinear Dynamic Analysis of Complex Structures,” Earthquake Engineering and Structural Dynamics, Vol. 1, pp. 241-252, 1973.
[29] Wood W.L., Bossak M., and Zienkiewicz O.C., “An Alpha Modification of Newmark’s Method,” International Journal for Numerical Methods in Engineering, Vol. 15, pp. 1562-1566, 1981.
[30] Zienkiewicz O.C., “A New Look at the Newmark, Houbolt and Other Time Stepping Formulas. A Weighted Residual Approach,” Earthquake Engineering and Structural Dynamics, Vol. 5, pp. 413-418, 1977.
[31] Zienkiewicz O.C., The Finite Element Method, McGraw-Hill Book Co (UK) Ltd. Third Edition, 1977.
[32] 張順益,“適用於擬動態試驗之具數值消散特性的外顯式積分法”,中國土木水利工程學刊,第十卷,第三期,第495~503頁,中華民國八十七年四月。
[33] 張順益,“無條件穩定外顯式積分法之發展”,中國土木水利工程學刊,第十三卷,第一期,第61~70頁,中華民國九十年四月。
[34] 張順益,“非線性動力分析之評估技巧”,中國土木水利工程學刊,第十四卷,第三期,第467~475頁,中華民國九十一年九月。
[35] 歐瀚文,「HHT-a積分法之非線性數值特性」,碩士論文,台北科技大學土木與防災研究所,2006。
論文全文使用權限:不同意授權