現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:應用電子點紋干涉術探討岩石貫切過程之破壞演化及破裂特徵 [以論文名稱查詢館藏系統]
論文英文名稱:Application of Electronic Speckle Pattern Interferometry to Monitor Failure Evolution and Fracture Characteristics under Rock Indentation Process [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
中文姓名:李昶佑
英文姓名:Chang-Yu Li
研究生學號:93428032
學位類別:碩士
語文別:中文
口試日期:2006-01-12
論文頁數:81
指導教授中文名:陳立憲
口試委員中文名:陳堯中;林世聰;壽克堅
中文關鍵詞:正向楔型貫切破壞試驗電子點紋干涉術(電子斑點干涉術)裂縫開口位移塑性區破壞韌度
英文關鍵詞:Normal wedge indentation fracture testCrack opening displacementElectronic speckle pattern interferometryPlastic zoneFracture toughness
論文中文摘要:晚近台灣採用機械式隧道工程開挖漸加頻繁,有效與失當之案例互見,因此於鑽掘機具與岩石破壞之互制行為顯得相形重要。本研究以正向楔型貫切破壞試驗(normal wedge indentation fracture test)搭配非破壞檢測之電子點紋干涉術(electronic speckle pattern interferometry, ESPI)進行試驗。於無圍壓條件下,以裂縫開口位移(COD)作為油壓伺服系統封閉迴路(close-loop)之回饋信號;或於具圍壓試驗時,改以傳統衝程位移行之,藉由兩者之控制始能穩定加載歷程之峰後(post-peak)行為,俾能繪製完整加載歷程曲線,進而探討單一楔型刀角施力於岩材產生面內(in-plane)延性變形或脆性張裂之影響。實驗係以台灣東部隧道開挖工程常須面對之大理岩作為擬脆性岩樣,藉由改變:(1)楔型刀角以模擬地下開挖機具之刀角幾何因素;(2)水平側向圍壓以模擬側向大地應力之影響而進行系列探討。
由傳統巨觀性之試驗結果可知,當楔型刀角越鈍或圍壓越大時,材料延性或脆性破壞所需之貫切力隨之增大。佐以較新式之微觀電子點紋干涉術所得動態連續之干涉影像,可知材料受楔型刀角貫入時,刀角下緣所產生之塑性區(延性破壞)隨楔型刀角之漸減(150°~90°)或圍壓增大(0至10MPa)而有逐漸擴大之趨勢,此與文獻關於聲射(AE)之於貫切試驗之結果比對,獲得合理的一致性。由連續干涉影像檢視試驗過程之破壞演化:(a)加載初期之彈性行為乃至延性破壞 (b)間接受張產生初裂之脆性破壞 (c)初裂後續之裂衍行為等階段,皆可進行即時、全域之觀察。
再者,本文亦採用線彈性破壞力學(LEFM)之裂端局部位移公式,直接利用電子點紋干涉術之計測估算材料之破壞韌度(fracture toughness),根據干涉圖計算不同楔型刀角及側向圍壓下,大理岩之破壞韌度求得介於1.01~1.26 。而貫入岩體之總能量可依不同之發生時機分為三分量:彈性(Ue)、塑性 (Up)及破壞分量(Uf)。利用加載歷程及電子點紋干涉術作初裂時機之判定,可簡易求得脆性初裂前,延性破壞的塑性分量Up約佔當時所施總能量之73%。而於初裂後,除原有Ue 及Up外,增加之脆性破壞分量Uf約僅為塑性分量Up的12%;即各能量分量比值Ue:Up:Uf=0.33:0.60:0.07。以上二者之破壞參數與能量釋放估計均與文獻有相符之比對,而驗證微觀光學電子點紋干涉術檢測之適確性。
論文英文摘要:Extensive uses of full-faced mechanical boring method in recent years report both success and failure. In order to facilitate more successful application of the method, it is highly important to study the relationship between mechanical indenter and rocks. This study combines normal wedge indentation fracture test with electronic speckle pattern interferometry (ESPI) for nondestructive test. To control the post-peak stability to obtain a complete loading curve, and to examine the influences of single normal wedge indentation on the in-plane brittle tension crack of natural rocks, crack opening displacement (COD) is used to be a close-loop control unconfinement case, and conventional stroke displacement adopted in the presence of confinement case. Marbles which make frequent appearances in tunnel engineering projects in eastern Taiwan are used as the specimen of brittle rocks for the investigation. The angle of wedge indenter is changed to simulate mechanical boring, and various horizontal confinement are conducted to simulate far-field stress.
Traditional macroscopic testing data indicate that the indentation force needed to cause brittle/ductile fracture rises with the increase in the angle of the wedge indenter or the confinement. By observing the moving interferometry images obtained in micron scale by ESPI, the plastic zone (ductile, damage zone) under the wedge indenter expands with decrease in the angle of wedge indenter and increase in the confinement. This result is in fine agreement with the one presented in studies on nondestructive technique of acoustic emission (AE). The moving interferometry images further help to facilitate real-time and full-field observation on fracture evolution in terms of: (a). elastic behavior to ductile fracture during initial loading; (b). brittle fracture of crack initiation under indirect tension; and (c). the crack propagation after crack initiation.
This investigation further uses formula related to linear elastic fracture mode and ESPI to calculate fracture toughness of materials. Under different wedge indenters and lateral confinements, fracture toughness of marbles falls in the range of 1.01~1.26 ( ). The total energy inside rock mass can be divided into three major parts: elastic (Ue), plastic (Up) and fracture energy (Uf). Loading curve and ESPI can be adopted to decide crack initiation time. Before crack initiation, brittle energy Up is about 73% of total energy. After crack initiation, brittle fracture energy Uf is about 12% of plastic energy. Namely, the ratio Ue : Up : Uf = 0.33 : 0.60 : 0.07. Both this energy dissipation ratio and the fracture toughness mentioned earlier are compared to the findings in previous literature, and fine agreement testifies to the validity of using ESPI to investigate fracture evaluation and to calculate fracture parameter under indirect tension in rock.
論文目次:中文摘要 i
英文摘要 iii
謝誌 v
目錄 vi
表目錄 viii
圖目錄 ix
符號對照表 xi
關鍵詞中英文及縮寫對照表 xiv
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究方法與範圍 1
1.3 論文架構與分章概述 2
第二章 文獻回顧 5
2.1 論文相關之破壞力學文獻扼述 5
2.1.1 觀念緣起 5
2.1.2 發展沿革 6
2.2 線彈性破壞力學介紹 7
2.2.1 Griffith能量平衡理論 7
2.2.2 Ⅰ型應力強度因子 9
2.3 破壞試驗-正向楔型貫切破壞之回顧 11
2.4 非破壞檢測-電子點紋干涉之回顧 17
2.5 ESPI光學量測原理之說明 18
2.5.1 斑點產生 18
2.5.2 面內位移 20
2.6 破壞試驗搭配光學非破壞檢測之可行性 21
第三章 實驗規劃與設計 23
3.1 試驗材料之選用 27
3.2 正向楔型貫切破壞試驗之架設 31
3.2.1 無圍壓之貫切試驗操作 33
3.2.2 具圍壓之貫切試驗操作 34
3.3 電子點紋干涉術之建置 34
3.4 干涉影像之資料處理 39
第四章 試驗結果與分析 41
4.1 材料巨觀破壞模式之觀察 41
4.2 加載歷程與光學監測之整合 45
4.3 彈-塑性界面發展之研析 49
4.3.1 不同楔型刀角影響之彈-塑性界面 49
4.3.2 不同側向圍壓影響之彈-塑性界面 51
4.4 應力強度因子之求算 53
4.5 延性與脆性破壞能量之釋放分量 57
4.6 實驗值與理論解之比對 60
第五章 結論與建議 63
5.1 結論 63
5.2 建議 64
參考文獻 66
附錄
附錄A 機械工程之洛氏硬度表 A-1
附錄B 不同楔型刀角及側向圍壓變數之加載歷程之F-d曲線 B-1
附錄C 應力強度因子計算 C-1
附錄D 求算破壞力學之材料缺陷尺寸 D-1
論文參考文獻:【1】林雍勝,「岩石貫切破壞之圍壓與刀楔影響及其對應之聲射演化」,碩士論文,國立台灣科技大學營建工程系,台北,2006。
【2】金重勳,機械材料,台南:復文書局,第98-103頁,1995。
【3】經濟部礦務局網站,http://www.mine.gov.tw,2006。
【4】黃兆龍,營建材料學,第7版,2002。
【5】蔡昇哲,「應用非破壞檢測之聲射法於岩石貫切破壞試驗之探討」,碩士論文,國立台灣科技大學營建工程系,台北,2005。
【6】劉思敏、許京軍、郭儒譯,相干光學原理及應用,天津:南開大學出版社,第126-130頁,2002。
【7】劉全偉,「溫度及壓力對花蓮大理岩力學行為之影響研究」,碩士論文,國立台灣科技大學營建工程系,台北,1996。
【8】謝其泰,「石材裂紋擴展量測之研究」,碩士論文,國立成功大學資源工程學系,台南,2003。
【9】鄺寶山,「花蓮大理岩在圍壓下力學行為之研究」,碩士論文,國立台灣大學土木工程學系,台北,1992。
【10】Biolzi, L., Pedala, S. and Labuz, J. F., “Mechanical characterization of natural building stone,”Degradation of Natural Stone, ASCE (Geotechnical Special Publication No.72), pp. 33–41, 1999.
【11】Broek, D., Elementary engineering fracture mechanics, 台北:開發圖書公司,第1-32頁,1996。
【12】Butters, J. N. and Leendertz, J. A., “Holographic and video techniques applied to engineering mesurements,” Trans. Inst. Meas. Control, vol.4, pp.349-354, 1971.
【13】Chen, L.H., “Failure of rock under normal wedge indentation,” Ph. D. Thesis, University of Minnesota, Minnesota, U.S.A., 2002.
【14】Chen, L.H. and Labuz, J. F., “Indentation of rock by wedge-shaped tools,” International Journal of Rock Mechanics & Mining Sciences, vol.43, pp.1023-1033, 2006.
【15】Detournay, E., Fairhurst, C. and Labuz, J. F., “A Model of tensile failure initiation under an indentor,” In P. Rossmanith (Ed.), Proc. 2nd Int. Conf. On Mechanics of Jointed and Faulted Rock (MJFR-S), Vienna, Austria, 1995.
【16】Detournay, E., Huang, H. and Damjanac, B., “ Normal wedge indentation of rocks by a wedge-shaped tool I: theoretical model,” Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Submitted. 2003.
【17】Fowell, R. J. and Xu, C., “The use of the cracked brazilian disc geometry for fracture investigation,” Int. J. Rock Mech. Min. Sci. & Geometry. Abstr., vol.36, no.6, pp.571-576, 1994.
【18】Gabor, D., “A enw microscopic principle,” Nature, vol.161, pp.777-778, 1948.
【19】Griffith, A. A., “The phenomena of rupture and flow in solids,” Phil. Trans. Ray. Soc. London A221, pp.163-197, 1921.
【20】Hertz, H. H., “Hertz's miscellaneous papers,” London: Macmillan, 1896.
【21】Irwin, G. R., “Analysis of stresses and strain near the end of a crack,” Trans. ASME, J. Appl. Mech., vol. 24, pp.361-364, 1957.
【22】Lawn, B. and Swain, M., “Microfracture beneath the point indentation in brittle solids,” J. Mater. Sci., pp.113-122, 1975.
【23】Lawn, B. and Wilshaw, R., “Review indentation fracture : principles and applications,” J. Mater. Sci., vol.10, pp.1049-1081, 1975.
【24】Leith, E. N. and Upatnieks, J., “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am., vol.52, pp.1123-1130, 1962.
【25】Lin, S. T., Hsieh, C.T. and Hu, C. P., “Two holographic blind-hole methods for measuring residual stress, ” Exp. Mech., vol.34, pp.141-147, 1994.
【26】Maji, A. K., Wang, J. L. and Lovato, J., “ Electronic speckle pattern interferometry for fracture mechanics testing,” Experimental Techniques, vol.15, no.3, pp.19-23, 1991.
【27】Moore A. J., and Tyrer, J. R., “An electronic speckle pattern interferometry for complete in-plane displacement measurement,” Meas. Sci. Technol., vol.1, pp. 1024-1030, 1982.
【28】Regan, R. O’and Dudderar, T. D., “New holographic interferometer for stress anlysis, ” Exp. Mech., vol.11, no.6, pp.241-247, 1971.
【29】Rice, J. R., “A path independent integral and the approximate analysis of strain concentrations by notches and cracks,” J. Appl. Mech., pp.379-386, 1968.
【30】Wykes, C., “Use of electronic speckle pattern interferometry (ESPI) in the measurement of static and dynamic surface displacements,” Optical Engineering, May, vol.21, pp.400-406, 1982.
【31】Whittaker, B. N., Singh, R. N. and Gexin Sun , “Rock fracture mechanics principles,” Design and Applications, 1992.
論文全文使用權限:同意授權於2007-02-13起公開