現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:邊坡崩塌因子與豪雨影響之研究 [以論文名稱查詢館藏系統]
論文英文名稱:An Investigation of some Factors that Triggered Landslides [以論文名稱查詢館藏系統]
英文姓名:Chih-Yen Li
指導教授英文名:Min-Hua Wei
口試委員英文名:Ta-Chün Yao;Che-Hao Chang
英文關鍵詞:TyphoonRainfallSlope FailureInfiltrationUnsaturated Soil
論文英文摘要:The geology of Taiwan is complicated, and the precipitation is rich and concentrated. Three quarter of Taiwan is made up of hillsides and the increase of the island population has directed many new developments towards the hillsides. As a result, the number of slopes failure has also increased; this is particularly so after a heavy rainfall for residual soil slopes. In mostly cases, due to the unique location of ground water table in the slope, soils between the slope surface and ground water table are in unsaturated state. It’s called unsaturated soil. During long raining season, heavy rainfall intensity will inevitably force the shear strength of these soils to depreciate and subsequently cause the slope to fail. Consider the engineering characteristics such as matric suction of unsaturated soil in the stability problem.
In this study, four typhoons: Haitang, Matsa, Talim and Longwang have been found to cause 1718 slope failures in 2005. Based on the forensic diagnosis of the observed failures, we can generalize the important factors for slope failures. Numerical analysis using SoilVision program is adopted to model the NTUA slope failure. Uncertainties such as soil layer distribution, ground water table, rainfall distribution and laboratory testing may affect the result of the stability analysis of slope. Finally, this study assessed the effect and contribution of soil parameters to an unsaturated slope.
論文目次:摘 要 i
Abstract ii
Acknowledgements iv
Table of Contents v
List of Tables viii
List of Figs ix
Chapter 1 Introduction 1
1.1 General 1
1.2 Objectives of Study 1
1.3 Methodology 2
1.4 Layout of Thesis 3
Chapter 2 Literature Review 5
2.1 Introduction 5
2.2 Landslide Hazard 6
2.2.1 Landslide Mechanisms and Type 6
2.2.2 Landslide Behavior 9
2.2.3 Landslide-Prone Occurrences 11
2.2.4 Geologic Conditions 14
2.2.5 Groundwater Conditions 18
2.2.6 Landslide-Rainfall Correlation 27
2.3 Numerical Analysis on Slope Stability 38
2.4 Uncertainty, Probability and Risk Analysis 42
2.4 Uncertainty, Probability and Risk Analysis 42
2.4.1 Uncertainty Analysis 43
2.4.2 Risk Analysis 44
2.4.3 Basic Concepts 45
2.4.4 Reliability Index 49
2.4.5 Probabilistic Analysis of Performance Function 50
Chapter 3 Rainfall induced landslides 52
3.1 Introduction 52
3.2 Topography, Geology, Climate and Hydrology 54
3.2.1 Topography and Geology 54
3.2.2 Climate 55
3.3 Typhoon 62
3.4 Typhoons in 2005 67
3.4.1 Typhoon Haitang 68
3.4.2 Typhoon Matsa 71
3.4.3 Typhoon Talim 72
3.4.4 Typhoon Longwang 74
3.4.5 Disaster Statistics 77
3.5 Slope Failures 82
3.5.1 Types of Slope Failure 82
3.5.2 Statistics of Slope Failures 91
3.5.3 Landform and Geology of Slope 94
3.6 Rainfall Brought by Typhoons 115
3.6.1 Maximum Rainfall and Accumulated Rainfall 118
3.6.2 Maximum 24-Hour Rainfall of Each Typhoon 122
3.7 Other Factors of Contributing to Slope Failures 127
3.7.1 Earthquake/Fault 128
3.7.2 River/Stream System 132
3.7.3 Slope Angles 134
Chapter 4 Numerical analysis of Slope Stability 139
4.1 Introduction 139
4.2 Outline of the Study Area 140
4.2.1 Site Topography and Geology 140
4.2.2 Hydrology and Climate 142
4.3 Numerical Program Used 144
4.3.1 SVFLUX 144
4.3.2 SVSOLID 150
4.3.3 SVDYNAMIC 154
4.4 Infiltration Effects on Stability of Soil Slope 162
4.4.1 Geometry of Slope and Soil Properties 162
4.4.2 Model of Analysis 164
4.4.3 Rainfall Effect on Water Pressure 167
4.4.4 Summarize Briefly 175
Chapter 5 Uncertainty and Probability Analysis 176
5.1 Introduction 176
5.2 Random Variables 178
5.2.1 Monte Carlo Simulation 180
5.2.2 Rosenblueth’s Point Estimates Method 183
5.2.3 First-Order Second-Moment Methods (FOSM) 186
5.3 Application 188
5.3.1 Model of Analysis 188
5.3.2 Sensitivity Analysis 191
5.3.3 Method of Analysis 193
5.4 Summary 199
Chapter 6 Conclusions and Recommendation 201
6.1 Conclusions 201
6.2 Recommendation 203
References 204
論文參考文獻:[1] Abramson, L.W., Lee, T.S, Sharma, S. and Boyce, G.M. (2001). “Slope stability and stabilization methods.” A Wiley-Interscience Publication.
[2] Ambraseys, N., Srbulov, M. (1995). “Earhtquake induced displacements of slopes.” Soil Dynamics and Earthquake Engineering 14, pp59-71.
[3] Aleotti, P., Chowdhury, R. (1999). ”Landslide hazard assessment: summary review and new perspectives.” Bull Eng Geol Env 58, pp21-44.
[4] Au, S.W.C. (1998). ”Rain-induced slope instability in Hong Kong.” Engineering Geology 51, pp1-36.
[5] CECW-EG (1999). “Risk-Based Analysis in Geotechnical Engineering for Support of planning studies.” appendix A, ETL 1110-2-556.
[6] Cai, F. and Ugai, K. (2004). ”Numerical Analysis of rainfall effects on slope stability.” International Journal of Geomechanics, pp69-78.
[7] Crosta G. (1998). ”Regionalization of rainfall thresholds: an aid to landslide hazard evaluation.” Environmental Geology 35 (2-3), pp131-145.
[8] Chen, H., Lee, C.F., and Law, K.T. (2004). “Causative Mechanisms of Rainfall-Induced Fill Slope Failures.” Journal of Geotechnical and Geoenvironmental Engineering, pp593-602.
[9] Christian, J.T., Ladd, C.C., and Baecher, G.B. (1994). “Reliability applied to slope stability analysis.” Journal of Geotechnical Engineering, Vol. 129, No. 12, pp2180-2207.
[10] Cheng, J.D., Lin, L.L., Lu, H.S. (2002). ”Influences of forests on water flows from headwater watersheds in Taiwan.” Forest Ecology and Management 165, pp11-28.
[11] Casagli, N., Dapporto, S., Ibsen, M.L., Tofani, V., Vannocci, P. (2006). ”Analysis of the landslide triggering mechanism during the storm of 20th-21st November 2000, in Northern Tuscany.” Landslide 3, pp13-21.
[12] Cheung, P.Y., Wong, M.C., and Yeung, H.Y. (2006). “Application of rainstorm nowcast to real-time warning of landslide hazards in Hong Kong.” Hong Kong Observatory.
[13] Cho, S.E., Lee, S.R. (2001). “Instability of unsaturated soil slopes due to infiltration.” Computers and Geotechnics 28, pp185-208.
[14] Duncan, J.M., Member, H. (2000). “Factors of safety and reliability in geotechnical engineering.” Journal of Geotechnical and Geoenvironmental Engineering, pp307-316.
[15] Dai, F.C. and Lee, C.F. (2001). “Frequency-volume relation and prediction of rainfall-induced landslides.” Engineering Geology 59, pp253-266.
[16] Das, B.M. (1999). “Fundamentals of Geotechnical Engineering.” Brooks/Cole, A division of Thomson Learning.
[17] Fredlund, M.D., Wilson, G.W., and Fredlund, D.G. (1998). ”Estimation of Hydraulic Properties of an Unsaturated Soil Using A Knowledge-Based System.” Proceedings of the Second International Conference on Unsaturated Soils, Beijing, China, August 27-30.
[18] Fredlund, M.D., Wilson, G.W., and Fredlund, D.G. (2002). ”Use of the grain-size distribution for estimation of the soil-water characteristic curve.” Can. Geotech. J. 39, pp1103-1117.
[19] Fredlund, M. (2004). “SVFlux Theory Manual”, SoilVision Systems Ltd.
[20] Fredlund, M. (2004). ” Finite Element stochastic analysis”, SoilVision Systems Ltd.
[21] Fellin, W., Lessmann, H., Oberguggenberger, M., Vieider, R. (2004). “Analyzing uncertainty in Civil Engineering.” Springer.
[22] Fox, D.M., Bryan, R.B., Price, A.G. (1997). “The influence of slope angle on final infiltration rate for interrill conditions.” Gemderma 80, pp181-194.
[23] Gui, M.W., Chen, S.L. and Chang, W.T. (2003). ”Preliminary Study of a Collapsed Lateritic Slope in Taiwan.” Proc. Int. Conf. On Slope Engineering, Hong Kong, 654–659.
[24] Gasmo, J.M., Rahardjo, H., Leong, E.C. (2000). “Infiltration effects on stability of a residual soil slope.” Computers and Geotechnics 26, pp145-165.
[25] Han, K.K. (2001). “Modeling rainfall-induced landslides.” Proceedings of the 10th forum on Engineering Geologu & Geotechnics of Slopes, 23 October, Kuala Lumpur.
[26] Isukapalli, S.S. and Georgopoulos, P.G. (1999). ”Computational Methods for the Efficient Sensitivity and Uncertainty Analysis of Models for Environmental and Biological Systems.” Computational Chemodynamics Laboratory Environmental and Occupational Health Sciences Institute 170 Frelinghuysen Road, Piscataway, NJ 08854.
[27] Kim, J., Jeong, S., Park, S., and Sharma, J. (2004). “Influence of rainfall-induced wetting on the stability of slopes in weathered soils.” Engeering Geology 75, pp251-262.
[28] Lee, E.M., Jones, D.K.C. (2004). “Landslide risk assessment.” Thomas Telford.
[29] Ng, C.W.W., Shi, Q. (1998). “A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage.” Computers and Geotechnics 22, pp1-28.
[30] Phan, H.T.V., Fredlund D.G. (2003). ”The application of dynamic programming to slope stability analysis.” Can Geotech. J. Vol. 40, pp830-847.
[31] Pradel, D., Raad, G. (1993). “Effect of permeability on surficial stability of homogeneous slopes.“ J. Geotech. Eng., Vol. 119, pp315-332.
[32] Rahardjo, H., Lee, T.T., Leong, E.C., and Rezaur, R.B. (2005). “Response of a residual soil slope to rainfall.” Canadian Geotechnical Journal, pp340-351.
[33] Shakoor, A., Smithmyer, A.J. (2005). “An analysis of storm-induced landslides in colluvial soils overlying mudrock sequences, southeastern Ohio, USA.” Engineering Geology 78, pp257-274.
[34] Sivakumar Babu, G..L., Murthy, D.S.N. (2005). ”Reliability analysis of unsaturated soil slopes.” Journal of Geotechnical and Geoenvironmental Engineering, pp1423-1428.
[35] Soilvision system Ltd, http://www.soilvision.com/.
[36] Typhoon Dynamics Research Center, http://typhoon.as.ntu.edu.tw/people.htm.
[37] U.S. Army Corps of Engineers (1999). “Risk-based analysis in geotechnical engineering for support of planning studies.” CECW-EG..
[38] Varnes, D.J. (1957). “Landslides and Engineering Practice: Landslide types and processes.” Highway research board special report 29, pp20-45.
[39] Woo, S.M., Moh, Z.C., Yu, K., and Guo, W.S. (1981). ”A study of the causes of some rock slope failures along highways in Taiwan.” Proceedings, Third Conference of the Road Engineering Association of Asia and Australasia, Vol.1, pp761-777.
[40] Zhang, G., Robertson, P.K., Brachman, R.W.I. (2004). “Estimating Liquefaction-Induced Lateral Displacements using the standard penetration test or cone penetration test.” Journal of Geotechnical and Genvironmental Engineering, pp861-871.
[41] Zhan, T.L.T., and Ng, C.W.W. (2004). ”Analytical analysis of rainfall infiltration mechanism in unsaturated soils.” International Journal of Geomechanics, pp273-284.
[42] http://twgeog.geo.ntnu.edu.tw/index.htm.
[43] 中央氣象局 (2006),民國九十四年颱風調查報告。
[44] 台北市大地工程技師公會 (2001),國立台北藝術大學網球場下邊坡坍滑原因鑑定及長期整治方案建議工作報告書,台北。
[45] 朱瑞兆 (1993),應用氣候手冊,明文書局。
[46] 何春蓀 (1982),臺灣地體構造的演變,中華民國經濟部。
[47] 林朝棨、周瑞墩 (1974),臺灣地質, 台灣省文獻委員會。
[48] 林銘朗、鄭富書、吳俊傑 (1996),新中橫公路沿線天然災害及成因分析,地工技術,第57期,31-44頁。
[49] 侵台路徑分析, http://residence.educities.edu.tw/typhoonroom/typhoon/statistics/tai_01.htm#600
[50] 張文濤 (2004),基質吸力對於邊坡穩定性之研究–以林口台地為例,國立台北理工大學土木與防災研究所碩士論文。
[51] 徐鐵良 (2002),台灣工程基本資料叢書之四 地質與工程,中國工程師學會。
[52] 陳肇夏 (1998) ,台灣地質之十一 台灣的變質岩,經濟部中央地質調查所。
[53] 陳肇夏(1996),台灣的地質現象 第二集,經濟部中央地質調查所。
[54] 陳亦君 (2004),颱風降雨對海岸山脈北段公路邊坡崩塌影響之研究,東華大學自然資源管理研究所碩士論文,花蓮。
[55] 陳榮河、林美聆、廖洪鈞、林三賢、廖瑞堂、周南山、李維峰 (2004),台灣坡地與土石災害防治之回顧與展望,地工技術,第100期,第107-126頁。
[56] 游淳名 (2005),非飽和紅土剪力強度之研究-以林口台地為例,碩士論文,國立臺北科技大學土木與防災研究所,臺北。[論文引用為Yu (2005)]
[57] 傅裕盛 (2004),模糊理論應用於土石流危險度分析之研究,成功大學水利及海洋工程研究所碩士論文。
[58] 颱風(熱帶氣旋)災害, http://photino.cwb.gov.tw/tyweb/hazards/htm/rep-2.htm.
[59] 經濟部水利署, http://www.wra.gov.tw/ct.asp?xItem=12663&CtNode=4982.
[60] 楊介碩 (1989),邊坡破壞時間與降雨相互關係之研究,第三屆大地工程學術研究討論會。
[61] 趙國祥, 秦中天 (1993),大地工程設計之誤差分析,地工技術第43期,第70-80頁。
[62] 謝玉興 (2004),南橫公路邊坡崩壞與降雨研究,台灣公路工程第三十卷第十一期。