現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:GFRP棒應用於古蹟與歷史建築木梁構件補強之研究 [以論文名稱查詢館藏系統]
論文英文名稱:The Study on Wood Beam of Historical Building Reinforced by Using Glass Fiber Reinforced Plastic Bar [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
中文姓名:魏廷芳
英文姓名:Ting-Fang Wei
研究生學號:94428002
學位類別:碩士
語文別:中文
口試日期:2007-07-10
論文頁數:100
指導教授中文名:李有豐;蔡明哲
指導教授英文名:Yeou-Fong Li;Ming-Jer Tsai
口試委員中文名:陳清泉;徐裕健
中文關鍵詞:木構造古蹟與歷史建築木梁構件GFRP棒
英文關鍵詞:Wood Historical BuildingWood BeamGFRP Bar
論文中文摘要:本研究採用玻璃纖維強化高分子複合材料(Glass Fiber Reinforced Plastic,GFRP)製成棒,補強古蹟與歷史建物之受損木梁構件。主要目的為針對受損木梁構件進行預力GFRP棒補強,並建立其施工流程標準程序。在進行修復補強前,需先瞭解木材與GFRP棒之特性,木材基本力學性質可經由CNS抗壓、抗拉及抗剪測試;GFRP棒則透過拉力測試得知,後續進行複合材料彎矩補強受損木梁構件之理論推導,並與四點抗彎測試相驗證。研究中複合材料補強之受損木梁構件,實驗試體規劃為六組,補強材料採用木粉搭配環氧樹脂、GFRP棒以及CFRP貼片,進行受損木梁構件彎矩補強。經由四點抗彎測試所得之極限載重,與未補強組比較,可知木粉與環氧樹脂修補組、GFRP棒補強中心點與偏心點貫穿孔兩組以及CFRP貼片與GFRP棒均使用的補強組,其平均強度提升約0.6 %、4.3%、3.5%以及9.5%。最後,以程式分析整理出對照組與單使用GFRP棒補強中心點與偏心點貫穿孔兩組之力與位移關係,將其與實驗數據比對,結果顯示理論值與實驗值趨勢相同,且未補強組、中心點及偏心點貫穿孔補強兩組之平均極限載重絕對誤差百分比,分別為10.2%、11.6%及12.6%。
論文英文摘要:Hollow-sectioned wood beam which was pre-stressed by glass fiber reinforced polymer (GFRP) bar working method was proposed in the thesis. The four-point bending test was conducted to obtain the load-displacement relationships of seventeen timber beams. A total of six group specimens were tested, those groups are benchmark, control, wood power with epoxy, GFRP bar at the central and eccentric of the timber section, and GFRP rebar with CFRP sheet. Comparing the experimental results with the Control Group, the average strengths of the Wood-Epoxy, GFRP, GFRP-e and G-CFRP increase 0.6%, 4.3%, 3.5%, and9.5%, separately. A sectional analysis method was used to obtain the force-displacement relationships of these wood beams. It shows that the analytical results can reasonably predict the force-displacement relationships of these wood beams strenthened by GFRP bar or CFRP sheet.
論文目次:中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究背景 1
1.2 研究範圍 2
1.3 研究方法與目的 3
1.4 文獻回顧 4
1.4.1 國內相關文獻 4
1.4.2 國外相關文獻 5
第二章 預力GFRP棒補強木梁構件理論分析 14
2.1 預力原理 14
2.2 基本假設 17
2.3 材料組成律 17
2.3.1 木材應力-應變關係 18
2.3.2 GFRP棒應力-應變關係 19
2.4 預力GFRP棒補強理論推導 20
2.4.1 初始情形 21
2.4.2 自重情形 22
2.4.3 工作載重情形 23
2.4.4 破壞模式 24
2.5 彎矩與曲率數值分析 25
2.6 載重及位移之推導 26
第三章 實驗規劃與測試 27
3.1 實驗材料 27
3.1.1 柳杉 27
3.1.2 纖維強化高分子複合材料 28
3.1.3 GFRP棒材料特性與製程 29
3.1.4 CFRP貼片規格 32
3.1.5 環氧樹脂 33
3.2 木材力學性質實驗 35
3.2.1 壓縮性質測試 35
3.2.2 拉力性質測試 36
3.2.3 剪力性質測試 36
3.3 GFRP棒拉力實驗 37
3.3.1 實驗規劃 38
3.3.2 實驗設備 39
3.3.3 實驗方法 40
3.4 複合材料彎矩補強受損木梁構件實驗 41
3.4.1 實驗規劃 41
3.4.2 實驗設備 43
3.4.3 實驗方法 45
3.5 木構造梁之可逆性施工流程 47
3.5.1 準備工作 47
3.5.2 木構件物理性質量測 48
3.5.3 選定補強型式 48
第四章 實驗結果與理論驗證 53
4.1 木材力學性質 53
4.2 GFRP棒拉力 57
4.3 複合材料彎矩補強受損木梁構件 60
4.3.1 彎矩補強測試結果 60
4.3.2 受損木梁補強測試結果與比較 61
4.4 預力GFRP棒理論與實驗結果驗證比較 90
第五章 結論與建議 94
5.1 結論 94
5.2 建議 94
參考文獻 96
論文參考文獻:[1] Amy, K. and Svecova, D. (2004) “Strengthening of Dapped Timber Beams Using Glass Fibre Reinforced Polymer Bars,” Canadian Journal of Civil Engineering, Vol. 31, Issue. 6, pp. 943-955.
[2] ASTM D198-94, “Standard of Method of Static Tests of Lumber in Structural Sizes.”
[3] Bohannan, B. (1962) “Pre-stressed Wood Members,” Forest Products Journal, Vol. 12, No. 12, pp. 596-602.
[4] Borri, A., Corradi, M. and Grazini A. (2005) “FRP Reinforcement of Wood Elements Under Bending Loads,” Composites Part B: Engineering, ELSEVIER, Vol. 36, Issue 2, pp. 143-153.
[5] Broughton, J. G. and Hutchinson, A. R. (2001) “Effect of Timber Moisture Content on Bonded-in Rods,” Construction and Building Materials, ELSEVIER, Vol. 15, Issue 1, pp. 17-25.
[6] Buchanan, A. H. (1986) “Combined Bending and Axial Loading in Lumber,” Journal of Structural Engineering, ASCE, Vol. 112, No. 12, pp. 2592-2609.
[7] Buchanan, A. H. (1990) “Bending Strength of Lumber,” Journal of Structural Engineering, ASCE, Vol. 116, No. 5, pp. 1213-1229.
[8] Buell, T. W. and Saadatmanesh, H. (2005) “Strengthening Timber Bridge Beams Using Carbon Fiber,” Journal of Structural Engineering, ASCE, Vol. 131, No. 1, pp. 173-187.
[9] Castro, P. F. and Carino, N. J. (1998) “Tensile and nondestructive testing of FRP bars,” Journal of Composites for Construction, ASCE, Vol. 2, No. 1, pp. 17-27.
[10] Dagher, H. J., Kimball, T. E., Shaler, S. M. and Abdel-Magid, B. (1996) “Effect of FRP Reinforcement on Low Grade Eastern Hemlock Glulams,” Proc. National Conf. on Wood Transportation Structures, October 23-25, Madison, WI., U.S.A., 1996.
[11] Dagher, H. J. and Altimore, F. M. (2005) “Use of Glass-Fiber-Reinforced Polymer Tendons for Stress-Laminating Timer Bridge Decks,” Journal of Bridge Engineering, ASCE, Vol. 10, No. 1, pp. 21-27.
[12] Dempsey, D. D. and Scott, D. W. (2006) “Wood Members Strengthened with Mechanically Fastened FRP Strips,” Journal of Composites for Construction, ASCE, Vol. 10, No. 5, pp. 392-398.
[13] Eckelman, C. A. (1975) “Effect of Holes on the Bending Strength of Wood and Particleboard Parts,” Purdue University Agricultural Experiment Station Research Bulletin, No. 922, pp. 1-8.
[14] Franz F. P. Köllmann and Wilfred A. Cote, Jr., Principles of Wood Science and Technology Vol.1 Solid Wood.
[15] Fridley, K. J. (2002) “Wood and Wood-Based Materials: Current Status and Future of a Structural Material,” Journal of Material in Civil Engineering, ASCE, Vol. 14, No. 2, pp. 91-96.
[16] Gentile, C., Svecova, D. and Rizkalla, S.H. (2002) “Timber Beams Strengthened with GFRP Bars: Development and Application,” Journal of Composites for Construction, ASCE, Vol. 6, No. 1, pp. 11-20.
[17] Harvey, K. and Ansell, M. P. (1998) “Improved Timber Using Bonded-in GFRP Rods,” Proc. of the WCTE’98- The fifth World Conference on Timber Engineering, 17-20 August, Lausanne, Switzerland.
[18] Kocaoz, S., Samaranayake, V. A. and Nanni, A. (2005) “Tensile Characterization of Glass FRP Bars,” Composites Part B: Engineering, ELSEVIER, Vol. 36, Issue 2, pp. 127-134.
[19] Kubojima, Y., Tonosaki, M. and Yoshihara, H. (2005) “Effect of Additional Mass on the Young’s Modulus of a Wooden Beam,” Journal of Testing for Evaluation, ASTM, Vol. 33, pp. 278-282.
[20] Lorenzis, L. D., Scialpi, V. and Tegola, A. L. (2005) “Analytical and Experimental Study on Bonded-in CFRP Bars in Glulam Timber,” Composites Part B: Engineering, ELSEVIER, Vol. 36, Issue 4, pp. 279-289.
[21] Luggin, W. and Bergmeister, K. (1998) “Carbon Fiber Reinforced and Pre-stressed Timber Beams,” 2nd Int. PhD Symposium in Civil Engineering 1998 Budapest.
[22] Lyons, J. S. and Ahmed, M. R. (2005) “Factors Affecting the Bond Between Polymer Composites and Wood,” Journal of Reinforced Plastic and Composites, Vol. 24, No. 4, pp. 405-412.
[23] Mocelli, F., Scialpi, V. and Tegola, A. H. (2005) “Flexural Reinforcement of Glulam Timber Beams and Joints with Carbon Fiber-Reinforced Polymer Rods,” Journal of Composites for Construction, ASCE, Vol. 9, No. 4, pp. 337-347.
[24] Plevris, N. and Triantafillou, T. C. (1992) “FRP reinforced wood as structural material,” Journal of Materials in Civil Engineering, ASCE, Vol. 4, No. 3, pp. 300-315.
[25] Plevris, N. and Triantafillou, T. C. (1995) “ Creep Behavior of FRP-Reinforced Wood Members,” Journal of Structural Engineering, ASCE, Vol. 121, No. 2, pp. 147-186.
[26] Rammer, D. R. and McLean, D. I. (1996) “Shear Strength of Wood Beams,” National Conference on Wood Transportation Structures, October, 1996.
[27] Rammer, D. R. (1996) “Shear Strength of Glued-Laminated Timber Beams and Panels,” National Conference on Wood Transportation Structures, October, 1996.
[28] Rammer, D. R. and Lebow, P. K. (1997) “Shear Strength of Solid-Sawn Douglas-Fir Beams,” Journal of Material in Civil Engineering, ASCE, Vol. 9, No. 3, pp. 130-138.
[29] Soltis, L. A. and Rammer, D. R. (1994) “Shear Strength of Unchecked Glued-Laminated Beams,” Forest Products Journal, Vol. 44, No. 1, pp. 51-57.
[30] Soltis, L. A., Rosst, R. J. and Windorski, D. F. (1998) “Fiberglass-Reinforced Bolted Wood Connections,” Forest Products Journal, Vol. 48, No. 9, pp. 63-67.
[31] Svecova, D. and Eden, R. J. (2004) “Flexural and Shear Strengthening of Timber Beams Using Glass Fibre Reinforced Polymer Bars ─ An Experimental Investigation,” Canadian Journal of Civil Engineering, Vol. 31, Issue. 1, pp. 44-55.
[32] Triantafillou, T. C. and Deskovic, N. (1992) “Prestressed FRP Sheets as External Reinforcement of Wood Members,” Journal of Structural Engineering, ASCE, Vol. 118, No. 5, pp. 1270-1284.
[33] Triantafillou, T. C. (1997) “Shear Reinforcement of Wood Using FRP Materials,” Journal of Materials in Civil Engineering, ASCE, Vol. 9, No. 2, pp. 65-69.
[34] Wang, Y. C. and Kodur, V. (2005) “Variation of Strength and Stiffness of Fibre Reinforced Polymer Reinforcing Bars with Temperature,” Cement and Concrete Composites, ELSEVIER, Vol. 27, Issues 9-10, pp. 864-874.
[35] Yoshihara, H. and Ohhata, O. (2003) “Method of Measuring the Shear Strength of Wood by the Asymmetric Four-Point Bending Test Using a Notched Beam Specimen,” Journal of Testing and Evaluation, ASTM, Vol. 31, No. 4, pp. 1-5.
[36] Yoshihara, H. and Asuka, S. (2005) “Shear Stress/Shear Strain Relation of Wood Obtained by Asymmetric Four-Point Bending Test of Side-Tapered Specimen,” Journal of Testing and Evaluation, ASTM, Vol. 33, No. 1, pp. 1-6.
[37] 丁昭義(1990),木材化學,台北:國立編譯館。
[38] 毛犖、陳昶良(2005),古蹟木梁構件碳纖板隱蔽式修復程序與操作規範之研究,94年度建築研究計畫聯合研討會。
[39] 毛犖、李有豐、蔡明哲、李東明(2005),碳纖維強化高分子複合材料(CFRP)應用於木構造古蹟建築補強之研究,內政部建築研究所研究報告。
[40] 中國國家標準453,木材抗壓試驗法(1954)。
[41] 中國國家標準455,木材平行纖維方向剪力試驗法(1954)。
[42] 中國國家標準456,木材抗拉試驗法(1954)。
[43] 文化資產保存法(1982)。
[44] 王松永(1993),木材物理學,台北:國立編譯館。
[45] 李有豐、彭添富、張寬勇(2000),碳纖維強化高分子複合材料(CFRP)貼片補強RC結構物之研究,內政部營建署。
[46] 李乾朗(1992),傳統建築入門,行政院文化建設委員會。
[47] 李乾朗、俞怡萍(1999),古蹟入門,台北:遠流出版公司。
[48] 李乾朗(2003),台灣古建築圖解事典,台北:遠流出版公司。
[49] 林樹柱(1986),預力混凝土設計及施工,台北:大中國圖書公司。
[50] 洪紫萍、王貴公(2003),生態材料導論,台北:五南圖書出版公司。
[51] 徐耀賜(2001),複合材料(FRP),土木技術刊物─橋梁工程專輯,第37期,第135-151頁。
[52] 許明發、郭文雄(2004),複合材料,台北:高立圖書有限公司。
[53] 陳啓仁(2003),結構修復技術整合型研究計畫─台灣傳統古蹟及歷史建築耐震能力之基礎研究(一)─磚木混造建築結構分析模式之建立,內政部建築研究所。
[54] 陳啟仁、張紋韶(2003),認識木建築,台北:木馬文化出版。
[55] 張志純(1973),玻璃纖維及超級塑鋼大全,台北,財團法人徐氏基金會。
[56] 張志純(1988),纖維混成複合材料之應用,台北,財團法人徐氏基金會。
[57] 張永毅(2006),碳纖維棒應用於RC梁構件之研究,碩士論文,國立臺北科技大學土木與防災研究所。
[58] 梁定澎(1991),玻璃纖維實用技術,台南,復漢出版社。
[59] 黃斌、許桐郡(2002),古蹟及歷史建築大木構架原型榫頭力學性能之探討,國科會91年報告。
[60] 蔡如藩(1985),木材力學,台北:國立編譯館。
[61] 蔡得時、蕭泰吉、李尚成(1999),工程材料,台北:矩陣出版股份有限公司。
[62] 謝耀明(2002),碳纖維強化高分子複合材料(CFRP)應用於木構件彎矩補強之研究,碩士論文,國立臺北科技大學土木與防災研究所。
論文全文使用權限:不同意授權