現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:電容耦合地電阻應用於地下輕-非水相液體污染探測之研究 [以論文名稱查詢館藏系統]
論文英文名稱:The Research on Application of Capacitively Coupled Resistivity System in Underground LNAPL Contamination [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
中文姓名:林家進
英文姓名:Chia-Chin Lin
研究生學號:94428028
學位類別:碩士
語文別:中文
口試日期:2007-07-07
論文頁數:89
指導教授中文名:陳水龍
口試委員中文名:李焜發;陳立憲;蔡道賜
中文關鍵詞:電容耦合地電阻LNAPL污染非破壞檢測地下污染
英文關鍵詞:Capacitively-Coupled ResistivityNondestructive SurveyingUnderground ContaminationLNAPL Contamination
論文中文摘要:有機溶液的使用在工業發展過程中扮演著不可或缺之角色,然而有機溶液所造成地下地層之污染,常見以非水相液體之污染居多,當中又可分為比水重之非水相液體(Dense Non-Aqueous Phase Liquid,DNAPL)和比水輕之非水相液體(Light Non-Aqueous Phase Liquid,LNAPL)兩類。以往地下污染之檢測方式採用破壞性檢測(Destructive Surveying)施作,如鑽孔取樣、傳統電流地電阻探測法…等,然而此方式受限於現地條件,且耗費人力及成本;因此,本研究將使用非破壞性電容耦合地電阻系統(Capacitively Coupled Resistivity System)來施作地下污染範圍之檢測。
本研究中將以現地實際污染之案例來施測分析,依據非破壞性電容耦合地電阻系統之探測方式,將施測之成果,經由反算程式求得之視電阻率擬似剖面圖,用以研判分析並描繪出污染區域之範圍,最終再以現地鑽探報告及透地雷達施測之成果相互比對,用以驗證非破壞性電容耦合地電阻探測污染之可信度。
論文英文摘要:The use of organic solutions has been playing a crucial role in industrial development. However, these solutions are known to be the source of common underground contamination, most of which are the result of non-aqueous phase liquids. These liquids can be further categorized as Dense Non-Aqueous Phase Liquid (DNAPL) and Light Non-Aqueous Phase Liquid (LNAPL). In the past, the tests for underground contamination were carried out with destructive surveying methods, such as drilling and sampling, conventional electric resistivity probe, and yet this type of methods are often limited due to site conditions and known to be manpower and cost-consuming. Therefore in this study, a nondestructive capacitively coupled resistitvity system is introduced for the survey for the extent of underground pollution.

In this study, several cases of pollutions happened in real life are explored for analysis using the survey method suggested in nondestructive capacitively coupled resistitvity system. Then the survey results are analyzed using apparent resistivity psuedosection obtained from reverse modeling program and the extent of contamination is plotted. At the end, the results are compared with the bore logs and the ground-penetrating radar survey report to verify the credibility of using nondestructive capacitively coupled resistivity system in contamination survey.
論文目次:摘 要 .......................................I
ABSTRACT .......................................II
誌 謝 .......................................IV
目 錄 .......................................V
表 目 錄 .......................................VIII
圖 目 錄 .......................................IX
符 號 表 .......................................XI
第一章 緒論.....................................1
1.1前言 .......................................1
1.2研究動機...................................1
1.3研究目的與內容 .....................2
第二章 文獻回顧 ..............................4
2.1電容耦合地電阻法發展史 .....................4
2.2污染物型態 ..............................5
2.2.1 污染物定義............................5
2.2.2 污染物種類............................5
2.2.3 比水輕之非水相液體污染物特性..........6
2.3地下污染物探測之研究 .....................9
第三章 電容耦合地電阻原理 .....................12
3.1電學性質 ..............................12
3.1.1 電導係數 ..............................12
3.1.2 導磁係數 ..............................13
3.1.3 介電係數 ..............................14
3.2直流地電阻法 ..............................15
3.2.1 基本原理 ..............................15
3.2.2 電極施測排列方法 .....................17
3.3電容耦合地電阻法 .....................21
3.3.1 電容原理 ..............................21
3.3.2 電容耦合地電阻原理 ................25
第四章 案例研究 ..............................35
4.1場址概述 ..............................35
4.1.1 地理位置 ..............................35
4.1.2 氣候 ..............................36
4.1.3 地形地質 ..............................36
4.1.4 污染歷史 ..............................39
4.2試驗儀器與步驟 .....................43
4.2.1 試驗儀器 ..............................43
4.2.2 試驗步驟 ..............................46
4.2.3 儀器施測穩定性分析 ............49
4.3實際案例研究 ..............................58
4.3.1 測線佈置與施測參數 ............58
4.3.2 資料處理 ..............................59
4.3.3 試驗資料分析 .....................61
4.3.4 資料成果比對 .....................73
第五章 結論與建議 ..............................82
5.1結論 .......................................82
5.2建議 .......................................83
參考文獻 .......................................84
論文參考文獻:[1]Adepelumi, A.A., Solanke, A.A., Sanusi, O.B., Shallangwa, A.M., “Model tank electrical resistivity characterization of LNAPL migration in a clayey-sand formation”, Environ Geol 50: 1221–1233, 2006.
[2]Atekwana, E.A., Sauck, W.A., Werkema Jr., D.D., “Characterization of a complex refinery groundwater contamination plume using multiple geoelectrical methods”, Proceedings the symposium on the application of geophysics to engineering and environmental problems, EEGS, Chicago, pp 427–436, 1998.
[3]Atekwana, E.A., Sauck, W.A., Werkema Jr., D.D., “Investigations of geoelectrical signatures at a hydrocarbon contaminated site”, Journal of Appl Geophysics 44, pp167–180, 2000.
[4]Barker, R,D,, Moore, J., “The application of time-lapse electrical tomography in groundwater studies”, Leading Edge 17, pp1454–1458, 1998.
[5]Bear, J., “Dynamics of Fluids in Porous Media, American Elsevier Publishing Company”, Dover, New York , 1972.
[6]Benderitter, Y., Jolivet, A., Mounir, A., Tabbagh, A., “Application of the electrostatic quadripole to sounding in the hectometric depth range”, Journal of Applied Geophysics, 31, pp. 1–6, 1994.
[7]Cassidy, N.J., “GPR signal dispersion and attenuation characteristics of LNAPL hydrocarbon contamination, 11th International Conference on Ground Penetrating Radar, 2006.
[8]Clement, T.P., Kim, Y.C., Gautam, T.R., Lee, K.K., “Experimental and numerical investigation of DNAPL dissolution processes in a laboratory aquifer model”, Groundwater Monit and Remediat 24, pp88–96, 2004.
[9]Daniels, J.J., Roberts, R., Vendl. M., “Site studies of ground penetrating radar for monitoring petroleum product contaminants”, Proceedings of the symposium on the application of geophysics to engineering and environmental problems, EEGS, Chicago, pp 597–609, 1992.
[10]Davis, G.B., Johnston, C.D., Thierrin, J., Power, T.R., Patterson, B.M., “Characterizing the distribution of dissolved and residual NAPL petroleum hydrocarbons in unconfined aquifers to effect remediation”, Journal of Australian Geology & Geophysics 14 (2-3), pp. 243-248, 1993.
[11]Edwards, L. S., “A modified pseudosection for resistivity and IP”, Geophysics, 42, no.5, pp. 1020-1030, 1977.
[12]Endres, A.L., Greenhouse, J.P., “Detection and monitoring of chlorinated solvents by thermal neutron logging”, Ground Water 34, pp. 283–292, 1996.
[13]Endres, A.L., Redman, J.D., “Modelling the electrical properties of porous rocks and soils containing immiscible contaminants”, Journal of Environmental and Engineering Geophysics 0 (2), pp. 105–112, 1996.
[14]Gajdos, V., Kral, V., “Influence of hydrocarbon pollution to soil conductivity”, Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP), pp.785–789, 1995.
[15]Geometrics, “OhmMapper TR1 Operation Manual”, Geometrics Inc., USA, 2004.
[16]Godio, A., Naldi, M., “Two-dimensional electrical imaging for detection of hydrocarbon contaminants”, Near Surf Geophys 1, pp. 131–137, 2003.
[17]Grard, R., “A quadrupolar array for measuring the complex permittivity of the ground. Application to earth prospection and planetary exploration”, Measurement Science & Technology, 1, pp. 295–301, 1990.
[18]Grard, R., Tabbagh, A., “A mobile four-electrode array and its application to the electrical survey of planetary grounds at shallow depths”, Journal of Geophysical Research, 96, B3, pp. 4117-4123, 1991.
[19]Grumman, D.L., Daniels, J.J., “Experiments on the detection of organic contaminants in the vadose zone”, Journal of Environmental and Engineering Geophysics 0 (1), 31–38(1996).
[20]Knight, R., “Hysteresis in the electrical resistivity of partially saturated sandstones”, Geophysics 56 (12), pp. 2139–2147, 1991.
[21]Kuras. O., Beamish. D., Meldrum, P. I., Ogilvy, R.D., “Fundamentals of the capacitive resistivity technique,” Geophysics, vol.71, no. 3, pp. 135-152, 2006.
[22]Lee, S.K., Cho, S.-J., Song, Y., Chung S.-H., “Capacitively-coupled resistivity method-Applicability and limitation”, Geophysical Exploration, 5, no. 1, pp. 23–32, 2002.
[23]Loke, M. H., “Electrical imaging surveys for environmental and engineering studies- A practical guide to 2-D and 3-D surveys”, Geometrics Inc., 1999.
[24]McNeill, J. D., “Electromagnetic terrain conductivity measurement at low induction numbers”, Technical note TN-6, Geonics Ltd, 1980.
[25]Parasnis, D. S., , “Principles of applied geophysics”, Chapman & Hall, 1997.
[26]Redman, J.D., De Ryck, S.M., Annan, A.P., “Detection of LNAPL pools with GPR theoretical modeling and surveys of a controlled spill”, Proceedings of the Fifth International Conference on Ground Penetrating Radar,pp. 1283–1294, 1994.
[27]Sauck, W.A., “A model for the resistivity structure of LNAPL plumes and their environs in sandy sediments”, Journal of Applied Geophysics 44, pp. 151–165 , 2000.
[28]Schneider, G.W., Greenhouse, J.P., “Geophysical detection of perchloroethylene in a sandy aquifer using resistivity and nuclear logging technique”, Proceedings of the symposium on the application of geophysics to engineering and environmental problems(SAGEEP), pp. 619–628 , 1992.
[29]Schneider, G.W., De Ryck, S.M., Ferre, P.A., “The application of automated high resolution DC resistivity in monitoring hydrogeological field experiments”, Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP), pp. 145–162, 1993.
[30]Shima, H., Texier, B., Kobayashi, T., Hasegawa, N., “Fast imaging of shallow resistivity structures using a multichannel capacitive electrode system”, 65th Annual International Meeting, SEG, Expanded Abstracts, pp. 377–380, 1995.
[31]Timofeev, V. M., “Experience in the use of high frequency electrical geophysical methods in geotechnical and geocryological field studies”, 3rd International Conference on Permafrost, NAUKA, Proceedings, pp. 238–247, 1973.
[32]Timofeev, V.M., Rogozinski, A.W., Hunter, J.A., Douma, M., “A new ground resistivity method for engineering and environmental geophysics”, Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems, EEGS, pp. 701-715, 1994.
[33]Vanhala, H., “Mapping oil-contaminated sand and till with the spectral induced polarization (SIP) method”, Geophysical Prospecting 45, pp. 303–326, 1997.
[34]Walker, J. P., Houser, P.R., “Evaluation of the OhmMapper instrument for soil moisture measurement”, Soil Science Society of America Journal, VOL. 66, pp. 728-734, 2002.
[35]Wait, J. R., “Application of the electrostatic quadripole to sounding in the hectometric depth range”, Journal of Applied Geophysics, 34, pp. 79–80, 1995.
[36]Yang, C.H., Yu, C. Y., Su, S. W., “High resistivities associated with a ewly formed LNAPL plume imaged by geoelectric techniques – a case study” , Journal of the Chinese Institute of Engineers, Vol. 30, No. 1, pp. 53-62 , 2007.
[37]http://maps.google.com/
[38]http://twinfo.ncl.edu.tw/tiqry/hypage.cgi?HYPAGE=search/search_sim.hpg&dtd_id=4國家圖書館台灣概覽-地方概況查詢系統
[39]http://edb.epa.gov.tw/localenvdb/ChiaYi/index.htm環保署地方環境資料庫-嘉義縣
[40]「土壤與地下水污染整治法」,民國92年1月8日總統令制定公佈。
[41]王子賓,「結合地電阻影像剖面法與透地雷達法調查DNAPLs之案例研究」,碩士論文,中央大學應用地質研究所,桃園,2005。
[42]石再添:臺灣西南部洲潟海岸的地形及其演變,師大地理研究報告,第5期,第11-48頁,1979。
[43]李冠樺,「電容耦合地電阻探測系統應用於地下管線及坑道之研究」,碩士論文,中央大學地球物理研究所,桃園,2006。
[44]李維峰、張嘉峰、梅興泰、蔡道賜,「地電阻影像剖面探測法於地下工程之應用」,地工技術雜誌,第108期,第91-104頁,2006。
[45]林立偉,「非水相液體於土壤中滲流之研究」,碩士論文,交通大學土木研究所,新竹,2006。
[46]習良孝、何忠陽、羅薪又、宋光中,「土壤與地下水污染整治標準及處理技術之現況評估」,中興工程顧問社專案研究報告,中興工程顧問社,2000。
[47]陳家洵,「地下水污染問題之討論」,應用倫理研究通訊,中央大學哲學研究所應用倫理研究中心,Vol. 3,1997。
[48]梅興泰,「RIP二維分析之初探」,碩士論文,台灣大學土木工程研究所,台北,2001。
[49]黃世杰,基本電學,三民書局,台北,第245-249頁,1996。
[50]黃鑑村,直流及交流電路如何工作,無線電界雜誌社,台北,第259-274頁,1999。
[51]楊証傑,「ERT在地工調查應用之問題評析與空間解析度探討」,碩士論文,交通大學土木工程學系碩士班,新竹,2005。
[52]謝兆申、王明果,「臺灣地區主要土類圖輯」,行政院農委會補助,台中市,1991。
[53]鍾進渝,「地電阻影像法應用於地層污染檢測之研究」,碩士論文,中央大學應用地質研究所,桃園,2001。
[54]簡錦樹、林道國,「台灣之地層系統的水文地質單位劃分及其命名問題」,中央地質調查所特刊第四號,323-364,1990。
論文全文使用權限:同意授權於2008-08-23起公開