現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:結構物安裝球面摩擦型隔震器地震反應之數值模擬 [以論文名稱查詢館藏系統]
論文英文名稱:Numerical Simulations of Seismic Responses of Structures Isolated with
Spherical Sliding Isolators [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
中文姓名:柯書哲
英文姓名:Shu-Zhe Ke
研究生學號:94428004
學位類別:碩士
語文別:中文
口試日期:2007-07-19
論文頁數:107
指導教授中文名:張順益
指導教授英文名:Chang,S.Y
口試委員中文名:宋裕祺;林主潔
口試委員英文名:yu-chi,sung;Chu-Chieh Lin
中文關鍵詞:隔震摩擦型隔震器SAP2000
英文關鍵詞:spherical sliding isolatorSAP2000
論文中文摘要:隨著電腦運算能力的進步,以往難以進行的結構非線性動力分析藉由電腦強大之運算能力亦變的可行。對於滑動支承之模擬,若能運用現有之結構分析程式,模擬滑動支承之運動行為,將更增其分析上之便利性。
本研究之主軸係利用結構分析程式SAP2000建立分析模型,期望能正確模擬出球面摩擦型隔震器之隔震行為,並且進一步驗證該分析程式之實用性。為了正確模擬球面摩擦型隔震器之特性,以及驗證程式模擬的準確性,在本文中將引述先前論文所提之球面摩擦型隔震器特性試驗(郭品宏 2001),以建立模擬時之依據;接著,再以縮尺鋼構架振動台試驗(許宏旭 2003)所得之結果數據,進一步驗證模擬之正確性。研究中所建立之SAP2000分析模型,其尺寸設計和實際試驗鋼構架完全相同,由於SAP2000軟體是工程結構設計用之套裝軟體,因此我們僅需將鋼構架各部位尺寸、型鋼斷面及材料性質輸入即可,並且使用其內建隔震元素來模擬球面摩擦型隔震器之運動行為,其中包含有效勁度、摩擦係數等。本研究最大的目的在於利用先前實驗所得之結果數據,驗證以現有之結構分析軟體SAP2000能可靠模擬結構物安裝球面摩擦型隔震器之地震反應,可提供日後使用者之參考。
論文英文摘要:As computers are becoming more and more advanced in its calculating capability, the analysis of structural non-linear dynamic which was once difficult to execute is now realizable by the use of computers. With respect to the simulation of sliding bearing, applying the existing structural analyzing program to simulating the sliding bearing’s motion behavior will increase the analytical convenience.
This research uses the structural analysis program, SAP2000, to construct the analytical model, aiming to correctly simulate the spherical sliding isolator behavior and further to certify the practicality of this analytical program. In order to simulate correctly the characteristic of spherical sliding isolators and to ensure the accuracy of the verification program, this thesis will cite the component test of spherical sliding isolators from the past thesis of (郭品宏 2001) to establish the basis for the simulation. Furthermore, the date from the seismic behaviors of a structure with spherical sliding isolators in the past thesis of (許宏旭 2003) will be applied to ensure the accuracy of the simulation. The analytical model SAP2000 constructed for this study uses the exact same size as the steel structure used in actual experiments. As SAP2000 is an engineering structure used to design package software, we only need to input data of the various size, cross section of figured steel and material characteristic. We can further use the build-in link to simulate the motion behavior of spherical sliding isolators including the effective stiffness and the friction coefficient. The main goal of this thesis is to apply the data from past experiments to verify if the current structural analytical software SAP2000 is able to simulate correctly the reaction of a construction equipped with spherical sliding isolators during earthquakes for reference in the future.
論文目次:中文摘要 i
英文摘要 ii
誌 謝 iv
目 錄 v
表目錄 vii
圖目錄 viii
中文摘要 i
英文摘要 ii
誌 謝 iv
目 錄 v
表目錄 vii
圖目錄 viii
第一章 第一章 緒論 1
1.1 前言……………………………………………………................ 1
1.2 研究動機及目的………………………………………………..... 1
1.3 隔震支承概述…………………………………………………….. 3
1.3.1 文獻回顧……………………………………………………3
1.3.2 隔震系統種類及特性………………………………….….. 4
1.4本文內容……………………………………………………………7
第二章 球面摩擦型隔震器之力學模型與特性………………………... 13
2.1 球面摩擦型隔震器之設計程序…………………………….......... 13
2.2 球面摩擦型隔震器之力學模型………………………………….. 15
2.3 性能測試裝置及步驟…………………………………………….. 16
2.4 性能測試結果…………………………………………………….. 17
第三章 加裝隔震器之縮尺空間鋼構架振動台試驗與結果分析………...... 33
3.1 縮尺空間鋼構架簡介…………………………………………….. 33
3.1.1 鋼構架設計………………………………………………... 34
3.1.2 鋼構架之隔震系統設計…………………………………... 34
3.2 試驗裝置及架設方式…………………………………………….. 38
3.2.1 振動台地震模擬…………………………………………... 38
3.2.2 試驗裝置…………………………………………………... 38
3.2.3 試驗裝置之架設方式……………………………………... 38
3.3 試驗程序………………………………………………………….. 39
3.3.1 試驗項目………………………………………………....... 39
3.3.2 輸入之地震資料…………………………………………... 40
3.4 試驗結果………………………………………………………….. 41
3.4.1 白訊振動試驗……………………………………………... 42
3.4.2 模擬地震力輸入之試驗結果……………………………... 42
3.4.2.1 單向地震力輸入下之隔震器反應……………… 42
3.4.2.2 單向地震力輸入下之鋼構架反應………….…... 43
3.4.2.3 雙向地震力輸入下之隔震器反應…………….... 44
3.4.2.4 雙向地震力輸入下之鋼構架反應…………….... 44
3.4.3 結果探討…………………………………………………... 45
第四章 球面摩擦型隔震器程式模擬與分析……………………………… 72
4.1 分析程式………………………………………………………...... 72
4.2 以sap2000建置縮尺空間鋼構架模型…………………………... 73
4.2.1 鋼構架分析模型之建置…………………………………... 74
4.2.2 鋼構架分析模型之驗證…………………………………... 75
4.2.2.1 模態分析………………………………………… 75
4.2.2.2 小地表加速度之歷時分析…………….………... 75
4.3 摩擦型元件模擬原理…………………………………………….. 76
4.3.1 隔震器數學模型之建立…………………………………... 76
4.3.2 隔震器基本性質之訂定…………………………………... 78
4.3.3 非線性行為參數…………………………………………... 78
4.3.2.1 彈性剪力勁度………………………………...…. 79
4.3.2.2 靜摩擦係數………………………………….…... 79
4.3.2.3 動摩擦係數……………………………………… 80
4.3.2.4 滑動面曲率半徑之計算………………………… 80
4.4 摩擦型支承模擬結果…………………………………………….. 81
4.4.1 大地表加速度之相對位移歷時比對……………………... 81
4.4.2 遲滯迴圈…………………………………………………... 82
第五章 結論與建議……………………………………………………..… 102
5.1 結論……………………………………………………………...... 102
5.2 建議…………………………………………………………...…... 102
參考文獻………………………………………………………………...…. 104
論文參考文獻:[1] Mokha, A., Constantinou, M.C and Reinhorn, A.M,“Teflon Bearings in Base Isolation I: Testing ” Journal of Structural Engineering, Vol. 116, No. 2, February 1990, pp. 438-454
[2] Asher, J. W., Hoskere, S. N., Ewing, R. D., Van Volkingburg, D. R., Mayes, R. L. and Button, M. (1995), “Seismic Performance of the Base Isolated USC University Hospital in the 1994 Northridge Earthquake.” Proceedings of the 1995 Joint ASME/JSME Pressure Vessels and Piping Conference, HI, USA, Vol. 319, 147-154.
[3] Chang, S. Y. and Mahin, S. A. (1994),“Velocity Depending Effect in FPS Isolators.”Journal of Chinese Institute of Engineers. Vol. 17, No. 4, pp. 537-547.
[4] Dowrich, D.J., Babor, j., Cousins, W.J. and Skinner, R. I.(1992), “Seismic Isolation of a Printing Press in Wellington, New Zealand.”Bulletin of the New Zealand National Society for Earthquake Engineering, Vol. 25, No.3, 161-166.
[5] Eisenberger, M. and Rutenberg, A. (1986), “Seismic base isolation of asymmetric shear buildings.” Engineering Structures, Vol. 8, No. 1, pp. 2-8.
[6] Fujita, T., Suzuki, S. and Fujita, S.(1990), “High Damping Rubber Bearing for seismic isolation of buildings.”Trans. Japan soc. Mech. Eng., C56, 658-666.
[7] Hanson, R. D., Ailken, I. D., Nims, D. K. P. J. Richer and R. E. Bachman (1993), “State-of-the-art and State-of-the-practice in seismic energy dissipation.” Proceedings of ATC-17-1 Seminar and Workshop on Base Isolation and Passive Energy Dissipation, and Active Control, San Francisco, California, March 11-12, 449-471.
[8] Lee, D. M. (1980), “Base isolation for torsion reduction in asymmetric structures under earthquake loading.”Earthquake Engineering and Structural Dynamics, Vol. 8, No. 3, pp. 349-359.
[9] Loh, C. H. (1999)“Interpretation of structural damage in 921 Chi-Chi-earthquake”Proceedings of International Workshop on Chi-Chi Taiwan Earthquake of September 21, Dec. 14-17, 1999, pp. 5-1~77.
[10] Loh, C. H., Lee, Z. K., Wu T. C. and Peng, S. Y. (2000), “Ground motion characteristics of the Chi-Chi earthquake of 21 September 1999.”Earthquake Engineering and Structural Dynamics, 29: 867-897.
[11] Michalakis Constantinou, Anoop Mokha, and Andrei Reinhorn, “ Teflon Bearings in Base Isolation II: Modeling” Journal of Structural Engineering, Vol. 116, No. 2, February 1990, pp. 455-474
[12] Moroni, M. O., Sarrazin, M. and Boroschek, R. (1998), “Experiments an a Base-Isolated Building in Santiago, Chile.”Engineering Structure, Vol. 20, No. 8, 720-725.
[13] Tsai, C. S. (1997), “Finite Element Formulations for Friction Pendulum Seismic Isolation Bearings.”International Journal for Numerical Methods in Engineering, Vol. 40, No. 1, 29-49.
[14] Tsopelas, P., Constantinou, M. C., Kim, Y. S. and Okamoto, S. (1996), “Experimental Study of FPS System in Bridge Seismic Isolation.”Earthquake Engineering & Structural Dynamic, Vol. 25, No. 1, 65-78.
[15] Turkington, D. H., Cooke, N., Moss, P. J. and Carr, A. J. (1989), “Development of a Design Procedure for Bridges on Lead-Rubber Bearing.” Engineering Structures, Vol. 11, No. 1, 2-8.
[16] Tyler, R. G. (1977), “Dynamic Tests on Laminated Rubber Bearings.”Bulletin of the New Zealand Society for Earthquake Engineering, Vol. 10, No. 3, 143-150.
[17] Wester, B., and Udwadia, F., (1983)“Period response of a sliding oscillator system to harmonic excitation.”Earthquake Engineering & Structural Dynamic, Vol. 11, pp. 135-146.
[18] Wang, Y. P., Teng, M. C. and Chung, K. W. (2001), “Seismic isolation of rigid cylindrical tanks using friction pendulum bearings.”Earthquake Engineering and Structural Dynamics, 2001; 30: 1083-1099.
[19] Zayas, V. A., Low, S. S. and Mahin, S. A. (1987)“The FPS Earthquake Resisting System, Experimental Report,”Report No. UCB/EEC-87-01, Earthquake Engineering Research Center University of California, Berkeley, CA.
[20] Zayas, V. A. and Low, S. S. (1989), “Earthquake Resistant Design Using Friction Pendulum Connections.” Seism Eng Res Pract Seismic Engineering: Research and Practice, San Francisco, CA, 149-158.
[21]「台灣建築物耐震設計規範」,內政部頒佈,台灣,1996。
[22] 張荻薇(1989),“隔震技術在橋梁工程之應用”,結構工程,Vol.4,No.1,pp.69-80。
[23] 唐家祥、劉再華,「建築結構基礎隔震」,淑馨出版社,台北,1997。
[24] 許丁友(1998),「LRB隔震房屋結構之三軸向地震力試驗研究」,國立台灣科技大學營建工程系碩士論文,黃震興博士指導,民國八十七年六月。
[25] 郭品宏(2001),「球面摩擦型隔震器之特性研究」,國立台北科技大學土木與防災研究所碩士論文,張順益、林至聰博士指導,民國九十年七月。
[26] 許宏旭(2003),「結構物使用球面摩擦型隔震器之耐震反應」,國立台北科
技大學土木與防災研究所碩士論文,張順益博士指導,民國九十二年七月。
[27] 張順益、郭品宏、林至聰、羅俊雄(2002),“球面摩擦型隔震器之特性研究”,結構工程,Vol.17,No.4,pp.35-52。
[28] 武田壽一等著;王鎮遠編譯,「建築物隔震、防振與控振」,鼎達實業,台北市,2000。
[29] 段永定、高金盛、苟昌煥、曾清銓(2000),“建築結構隔震設計手冊之研訂”,內政部建築研究所研究計畫成果報告,MOIS 901020。
論文全文使用權限:不同意授權