現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:複合式非破壞檢測佐探類岩材料於單刀與雙刀貫切之破壞機制 [以論文名稱查詢館藏系統]
論文英文名稱:Monitor Fracture Characteristics of Rock-Like Material under Single and Double Indentation by Coupled Nondestructive Techniques [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
中文姓名:胡光宇
英文姓名:Kuang-Yu Hu
研究生學號:94428053
學位類別:碩士
語文別:中文
口試日期:2007-07-25
論文頁數:81
指導教授中文名:陳立憲
口試委員中文名:陳堯中;陳志南;林世聰
中文關鍵詞:電子點紋干涉術聲射貫切破壞裂縫開口位移破壞缺陷長度裂端微塑區
英文關鍵詞:Electronic speckle pattern interferometryAcoustic emissionIndentation fractureCrack opening displacementIntrinsic flaw lengthProcess zone
論文中文摘要:台灣由於山多平地少,人口主要分佈於平原區,發展至今,已漸趨飽和,因此地下隧道開挖工程與日俱增。惟其機械式掘削開挖過程之力學機制仍屬渾濛,因此本研究以建立一正向楔型貫切破壞試驗(normal wedge indentation fracture test)並佐以電子點紋干涉術(Electronic Speckle Pattern Interferometry, ESPI)為主;及聲射(Acoustic Emission, AE)技術為輔之複合非破壞檢測,進行類岩接觸破壞機理之探求,俾為工程實務之佐參。
於無圍壓系列實驗中,以裂縫開口位移(Crack Opening Displacement, COD)之量測作為油壓伺服器封閉迴路(closed-loop)之回饋控制信號,藉此穩定試驗過程之峰後行為;求得完整加載歷程曲線與相對應之非破壞檢測數據進行研析。
研究面向計分三大主軸:(a)探討鑽刀幾何形狀與材料之顆粒尺寸(grain size)在不同應力場狀況下,對破壞力學之破壞缺陷長度(intrinsic flaw length)之關聯性進行探討。藉電子點紋干涉術所得干涉影像,確認變形不連續之初裂發生位置乃在臨界彈-塑性界面上,並由發生瞬間之影像推判破壞力學中材料之破壞缺陷長度,再與線彈性破壞力學(Linear Elastic Fracture Model, LEFM)之張裂模式(opening mode)之理論做一比對,求得楔型刀角之增加,使最大貫切力因之增大;而相對應之臨界貫切深度反而減小,但刀角對材料破壞之缺陷尺寸之影響甚微。因缺陷尺寸為材料破壞力學中之材料參數,與材料本身的顆粒尺寸(grain size)存在正相關;(b)承襲前人文獻對單一刀頭貫切之探討,進而施作雙刀頭貫切試驗,期能理解刀頭與刀頭間之互制行為,並進而分析比較巨微觀尺度裂縫行為之一致性。由實驗得知,隨刀頭間距之縮短,裂縫之初裂方位,會偏離原垂直之貫切軸,偏離之角度隨間距之縮短而增加,而裂衍路徑朝朝側向自由偏離之趨勢而得以觀察。因此,由研究得知,適當之刀距安排有助於機械開挖效率之提升;(c)同步化整合電子點紋干涉術與聲射技術兩項非破壞檢測以探求貫切試驗之破壞機制,過程中,先分別於變形連續階段探討彈-塑性界面以驗證複合非破壞檢測之可行與一致;再於變形不連續階段對裂端微塑性區(process zone)進行適確性之探討。
綜計三大研究主軸之實驗成果與相對應之理論比對解析,求得頗為一致之趨勢。
論文英文摘要:Nowadays, extensive uses of full-faced mechanical boring method in recent years. But the relationship between mechanical indenter and rocks in cutting process is still not clear, so, this study set up normal wedge indentation fracture test combines with electronic speckle pattern interferometry (ESPI) and acoustic emission (AE) for nondestructive test to monitor the contact fracture characteristics of rock material, in order to get some data for in situ.
To control the post-peak stability to obtain a complete loading curve, and to investigate nondestructive techniques data, the crack opening displacement (COD) is used to be a close-loop control unconfinement case. This study can divide three parts: (a) By varying wedge angle of cutter and grain size of rock-like materials, experimental observation of intrinsic flaw length was made. Furthermore, the intrinsic flaw length of fractured material was monitored by optical interferometry and then compared with the analytical solution based upon the opening mode of linear elastic fracture model (LEFM). We found that the blunter wedge angle of indenter, the larger the maximum indentation force. In addition, the indentation pressure and the critical indentation depth would decrease as increasing wedge angle. Because, intrinsic flaw length is treated as a material property in fracture mechanics. (b) Follow previous paper about single indenter, in order to understand double indenters behavior, we do double indenters and analysis the relation between micro and macro crack behavior. Testing results indicate the distance of indenters decreases with direction of crack initiation deviate from original vertica line, deviate angle increases with the distance of indenters decreases. So, proper indenter distance contribute to machinery excavate has help about the improvement of cutting efficiency. (c) Synchronize electronic speckle pattern interferometry and acoustic emission to investigate fracture characteristics of indentation test, first, monitor the radius of elasto-plastic interfacial to prove coupled nondestructive techniques is fine to work in displace-continuity, second, monitor the process zone about fitting and proper in displace-discontinuity.
We get rather unanimous trend in experiment achievement compared with corresponding theory.
論文目次:摘 要 I
ABSTACT III
誌 謝 V
目 錄 VI
表 目 錄 VIII
圖 目 錄 IX
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 1
1.3 研究方法與範圍 2
1.4 論文內容 2
第二章 文獻回顧 5
2.1貫切行為之課題描述 5
2.2貫切作用下變位連續之延性破壞:孔洞擴展模式 7
2.2.1 假設條件 7
2.2.2 應力場分析 9
2.3貫切作用下變位不連續之脆性破壞:線彈性破壞力學模式 12
2.3.1破壞缺陷長度 14
2.3.2 裂端微塑區(process zone) 16
2.4複合式非破壞檢測之沿革 17
2.4.1電子點紋干涉術 17
2.4.2聲射技術 19
第三章 試驗規劃與執行 21
3.1試驗流程 23
3.1.1單刀楔形正向貫切 23
3.1.2雙刀楔形正向貫切 24
3.2試驗材料 26
3.2.1人造類岩 26
3.2.2天然岩材 26
3.3正向楔型貫切試驗之建置(破壞試驗) 29
3.4複合式非破壞檢測術之建置1:電子點紋干涉術 31
3.4.1斑點成因及應用 31
3.4.2面內位移量測 32
3.4.3電子點紋干涉儀之架設 34
3.5複合式非破壞檢測術之建置2:聲射技術 38
3.5.1聲射基本原理 38
3.5.2聲射定位法則 40
3.5.3聲射儀器之架設 40
第四章 試驗結果與分析 43
4.1試驗參數說明 43
4.2岩材與楔型刀角於單刀貫切破壞之影響 44
4.2.1全觀破壞 44
4.2.2局部破壞 45
4.2.3實驗值與理論解之比對 49
4.2.4破壞缺陷長度之研析 52
4.2.4.1顆粒尺寸之影響 52
4.2.4.2 楔型刀角之影響 53
4.3雙刀貫切試驗於不同間距之破壞演化 57
4.3.1全觀破壞 57
4.3.2局部破壞 59
4.4非破壞檢測之耦合暨裂端微塑區之探求 67
4.4.1裂端微塑區之探求 67
4.4.2非破壞檢測耦合之適確性 69
第五章 結論與建議 72
5.1結論 72
5.1.1岩材與顆粒尺寸之影響 72
5.1.2楔型刀角之影響 72
5.1.3雙刀貫切之鄰刀間距之影響 73
5.1.4非破壞檢測之耦合暨裂縫尖端微小塑性區之探求 74
5.2建議 74
5.2.1破壞試驗 74
5.2.2非破壞試驗 75
參考文獻 76
符號對照表 79
論文參考文獻:【1】 李昶佑,「應用電子點紋干涉術探討岩石貫切過程之破壞演化及破裂特徵」,碩士論文,國立台北科技大學土木工程系,台北,2006。
【2】 林雍勝,「岩石貫切破壞之圍壓與刀楔影響及其對應之聲射演化」,碩士論文,國立台灣科技大學營建工程系,台北,2006。
【3】 黃國忠,博士論文,國立台灣科技大學營建工程系所,台北(2007)。完稿中。
【4】 經濟部礦務局網站,http://www.mine.gov.tw,2006。
【5】 劉峵瑋,「以非破壞耦合試驗研探類岩材料受楔型貫切破壞之側向自由邊界效應」,碩士論文,國立台灣科技大學營建工程系,台北,2007。
【6】蔡昇哲,「應用非破壞檢測之聲射法於岩石貫切破壞試驗之探討」,碩士論文,國立台灣科技大學營建工程系,台北,2005。
【7】鄺寶山,「花蓮大理岩在圍壓下力學行為之研究」,碩士論文,國立台灣大學土木工程學系,台北,1992。
【8】Biolzi, L., Pedala, S. and Labuz, J. F., “Mechanical characterization of natural building stone,” Degradation of Natural Stone, ASCE (Geotechnical Special Publication No.72), pp.33–41, 1999.
【9】Boussinesq, J., “Applications of Potentials for the Study of Equilibrium and Movement of Elastic Solids (in French),” Paris: Gautier-Villars, 1885.
【10】Butters, J. N. and Leendertz, J. A., “Holographic and video techniques applied to engineering mesurements,” Trans. Inst. Meas. Control, vol.4, pp.349-354, 1971.
【11】Chen, L.H., “Failure of rock under normal wedge indentation,” Ph. D. Thesis, University of Minnesota, Minnesota, U.S.A., 2002.
【12】Chen L.H. and Labuz J.F., “Indentation of rock by wedge-shaped tools” International Journal of Rock Mechanics & Mining Sciences (2006)
【13】Detournay, E., Fairhurst, C. and Labuz, J. F., “A Model of tensile failure
initiation under an indentor,” In P. Rossmanith (Ed.), Proc. 2nd Int. Conf. On Mechanics of Jointed and Faulted Rock (MJFR-S), Vienna, Austria, 1995.
【14】Gabor, D., “A enw microscopic principle,” Nature, vol.161, pp.777-778, 1948.
【15】Hertz, H. H., “Hertz's miscellaneous papers,” London: Macmillan, 1896.
【16】Holcomb, D. J. and Costin, L. S., “Detecting damage surface in brittle
materials using acoustic emission,” ASME J. Appl. Mech., vol.53, pp.536-544, 1986.
【17】Johnson, K. L., “The Correlation of Indentation Experiments,” J. Mech. Phys. Solids, pp.115-126, 1970.
【18】Kaiser, J., “Undersuchungen uber das Aufrterten Geraucchen beim Zevgersuch,” Ph. D Thesis. Technische Hochschule, Munich, 1953.
【19】Lawn, B. and Wilshaw, R., “Review indentation fracture: Principles and Applications,” J. Mater. Sci., vol. 10, pp.1049-108, 1975.
【20】Lawn, B. and Marshall D., “Hardness, Toughness, and Brittleness: an Bndentation Analysis,” J. Amer. Ceramic Society, vol. 62, no.7, pp.347-350, 1979.
【21】Leith, E. N. and Upatnieks, J., “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am., vol.52, pp.1123-1130, 1962.
【22】Marsh, D., “Plastic Flow in Glass,” Proc. Roy. Soc. London, Ser. A A279, pp.420-435, 1964.
【23】Mishnaevsky(Jr.), L. L., “A Brief Review of Soviet Theoretical Approaches to Dynamic Rock Failure,” Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., vol.30, no.6, pp.663-668, 1993.
【24】Mishnaevsky(Jr.), L. L., “Physical Mechanisms of Hard Rock Fragmentation under Mechanical Loading: A review,” Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., vol.32, no.8, pp.763-766, 1995.
【25】Moore, A. J., and Tyrer, J. R., “An electronic speckle pattern interferometry for complete in-plane displacement measurement,” Meas. Sci. Technol., vol.1, pp. 1024-1030, 1982.
【26】Shah, K. R., “Stress dependence of source mechanisms from acoustic emission,” Proceedings of Engineering Mechanics, vol.2, pp.1151-1154, 1995.
【27】Timoshenko, S. P. and Goodier, J. N., “Theory of Elasticity (3rd ed.),”
New York, NY: McGraw-Hill.
【28】Whittaker, B. N., Singh, R. N. and Gexin Sun, “Rock fracture mechanics principles,” Design and Applications, 1992.
【29】Wykes, C., “Use of electronic speckle pattern interferometry (ESPI) in the measurement of static and dynamic surface displacements,” Optical Engineering, May, vol.21, pp.400-406, 1982.
論文全文使用權限:同意授權於2008-08-30起公開