現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:近斷層人造地震波與設計反應譜相符地表運動歷時之製作 [以論文名稱查詢館藏系統]
論文英文名稱:Establishment of Artificial Ground Motions of Near-Fault and Response-Spectrum-Compatible [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
中文姓名:許銘仁
英文姓名:Min-Jen Hsu
研究生學號:94428001
學位類別:碩士
語文別:中文
口試日期:2007-07-13
論文頁數:86
指導教授中文名:宋裕祺
指導教授英文名:Yu-Chi Sung
口試委員中文名:張順益;呂良正;蔡益超
口試委員英文名:Shuenn-Yih Chang;Liang-Jenq Leu;I-Chau Tsai
中文關鍵詞:近斷層地震速度脈衝基因演算法設計反應譜
英文關鍵詞:Near-Fault EarthquakeVelocity PulseGenetic AlgorithmDesign Response Spectrum
論文中文摘要:近年來,近斷層地震引起學者廣泛的注意與重視,以921集集大地震為例,震央附近之車籠埔斷層錯動,使得鄰近斷層之建築物及橋梁產生毀壞和傾倒,斷層錯動產生永久地表位移並發生極大的速度脈衝為造成結構物破壞的主要原因之ㄧ。由於近斷層之地震紀錄並不如遠域地震者豐碩,因此本研究針對近斷層速度脈衝之波形特徵,建立一套近斷層人造地震歷時之模擬方法,採用最佳化理論且利用人工智慧 (AI,Artificial Intelligent) 中的基因演算法 (GA,Genetic Algorithm) 作為求解工具,進而製作近斷層人造地震波,以便快速地得到近斷層歷時供為結構分析與研究之用。
此外,依據現行耐震設計規範之規定在結構物進行動力歷時分析時,需採用與設計反應譜相符之水平地震紀錄,因此,本研究建立一套視窗化程式,內含建築物、公路橋梁與鐵路橋梁等耐震設計規範之設計反應譜並具有產生與反應譜相符 (response-spectrum-compatible) 之地震波的運算功能,使用者只需透過視窗選擇工址資料,並給予實測的地震紀錄,經由運算,就能方便且快速地得到符合設計反應譜的地表運動歷時。本文所得成果可供為工程師進行結構耐震設計之用。
論文英文摘要:Recently, more and more researches pay attention on the structural damages caused by near-fault earthquake. Since the near-fault earthquake can be characterized by a special wave form with a significant permanent ground displacement and a serious velocity pulse, it is not so popular in the past. As a result, its records of ground motion are far fewer than those of far-field earthquake. This thesis proposed an genetic-algorithm-based optimization model to simulate the important characteristics of near-fault earthquake. It can be seen that the results obtained could provide a satisfactory precision.
Based on the design code, the ground motions with a spectrum compatible to that specified in the code are necessary for time history analysis in seismic design. This thesis developed a analysis program with visual operation system to establish the artificial ground motions required. The application to the design of building, highway bridge and railway bridge are included. By which, the complicated procedure for the seismic design can be simplified. The results obtained could betinit the practical design efforts for the engineers.
論文目次:中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究內容與方法 2
第二章 文獻回顧 4
2.1近斷層地震 4
2.2 近斷層地震歷時之特性 4
2.2.1 高地表最大加速度(PGA)與高地表最大速度(PGV) 5
2.2.2 長延時脈衝的地表速度歷時 7
2.2.3 顯著的地表永久位移 11
2.2.4 其它之近斷層特性 11
2.2.4.1 近斷層地震之集中特性 11
2.2.4.2 近斷層地震之運動方向特性 12
2.2.4.3 地表最大速度與地表最大加速度之比值高 13
2.3 等效速度脈衝 14
2.5 小結 18
第三章 建立近斷層人造速度脈衝之最佳化模式 20
3.1 前言 20
3.2 最佳化理論概述 20
3.3 近斷層人造速度脈衝最佳化問題之分析流程 22
3.4 近斷層人造速度脈衝最佳化模式之建立 23
3.5 近斷層人造速度脈衝最佳化模式之驗證 29
3.5.1 最佳化模式之驗證結果 33
3.6 小結 33
第四章 基因演算法分析近斷層人造速度脈衝之最佳化問題 34
4.1 前言 34
4.2 基因演算法之理論 34
4.2.1 基因演算法基本流程 35
4.2.2 基因演算法之特點 45
4.3分析近斷層人造速度脈衝之最佳化問題 46
4.3.1 加入形狀限制條件之分析 50
4.3.1.1加入形狀限制條件分析結果之討論 54
4.3.1.2 Type-B速度脈衝之加速度歷時的製作 54
4.3.2 考慮不同PGV/PGA比值之速度脈衝製作 57
4.4 視窗化程式-近斷層人造速度脈衝之分析 62
4.5 小結 65
第五章 視窗化程式-製作與設計反應譜相符之地表運動歷時 66
5.1 前言 66
5.2 傅立葉轉換與傅立葉逆轉換 67
5.2.1 傅立葉相位譜 68
5.3 與反應譜相符之設計地表運動歷時的分析流程 69
5.4 與反應譜相符之設計地表加速度歷時的案例分析 71
5.5 視窗化程式設計方法 75
5.5.1 耐震設計規範資料庫之建立 75
5.5.2 Matlab編譯器 (Matlab Compiler) 77
5.6 視窗化程式設計成果 78
5.7 小結 80
第六章 結論與建議 81
6.1 結論 81
6.2 建議 82
參考文獻 83
論文參考文獻:[1] Alavi, B. and H. Krwinkler , "Consideration of Near-Fault Ground Motion Effects in Seismic Design," Proc 12th World Conference on Earthquake Engineering, Auckland, New Zealand, 2000.
[2] Bertero, V. V. , Mahin, S. A. and Herrera, R. A. , "Aseismic design implications of near-fault San Fernando earthquake records," Earthquake Engineering and Structural Dynamics, vol. 6, 1978, pp. 31-42.
[3] C. Darwin, "On the origin of species, " London: John Murray, 1859.
[4] Chin-Hsiung Loh , Zheng-Kuan Lee , Tsu-Chiu Wu and Shu-Yuan Peng , " Ground motion characteristics of the Chi-Chi earthquake of 21 September 1999," Earthquake Engineering and Structural Dynamics, 29, 2000, pp. 876-897.
[5] Conte, J. P. and Peng, B. F. , "Fully Non-stationary Analysis earthquake ground motion model," Journal of Engineering Mechanics, ASCE. , vol. 123, 1997, pp. 15-24.
[6] Gasparini, D. and Vanmarcke, E. H. , "A Program for Artificial Motion Generation, " Department of Civil Engineering, MIT, 1976.
[7] Hall, J. F. , Heaton, T. H. , Halling, M. W. and Wald, D .J. , "Near-source Ground Motion and Its Effect on Flexible Buildings," Earthquake Spectra, vol. 2, 1995.
[8] Housner, G. W. , Trifunac, M. D. , "Analysis of accelerograms-Parkfield earthquake," Bulletin of the Seismological Society of America, vol. 57, 1967, pp. 1193-1220.
[9] International Conference Building Officials, Uniform Building Code, Whitter, California, 1997.
[10] J. H. Holland, "Adaptation in Natural and Artificial System, " Ann Arbor, Michigan: The University of Michigan Press, 1975.
[11] K. A. DeJong, " An analysis of the behavior of a class of genetic adaptive system, " Ph.D. dissertation (CCS), University of Michigan, 1975.
[12] Lilhanand and W. S. Tseng. , "Development and Application of Realistic Earthquake Time Histories Compatible with Multiple-Damping Design Spectra," Proceedings of the Ninth World Conference on Earthquake Engineering, Tokyo/Kyoto Japan, Vol. 11, 1998.
[13] Makris, N. , Roussos, Y. S. , "Rocking Response and Overturning of Equipment Under Horizontal Pulse-Type Motion," Earthquake Engineering Research Center, College of Engineering University of California, Berkeley, PEER-98/05 ,1998.
[14] Makris, N. , Black, C. , "Dimensional Analysis of Inelastic Structures Subjected to Near Fault Ground Motions," Earthquake Engineering Research Center University of California, Berkeley, UCB/EERC 2003-05, 2003.
[15] Malhotra, P. K. , "Response of buildings to near-field pulse-like ground motions," Earthquake Engineering and Structural Dynamics, 28, 1999, pp. 1309-1326.
[16] Mavroeidis, G. P. , A. S. Papageorgiou. , "Near-Source Strong Ground Motion: Characterization and Design Issues," Proceedings of the Seventh U.S. National Conference on Earthquake Engineering (7NCEE), Boston, Massachusetts, 2002, pp. 21-25.
[17] Menu, C. and Fu, Q. , "An analytical model for near-fault ground motions and the response of SDOF systems," Earthquake Engineering Research Institute eds. Seventh US National Conference on Earthquake Engineering. Boston, Massachusetts: Mira Digital Publishing, Paper No.00011, 2002.
[18] Michalewicz Z. "A Modified Genetic Algorithm for Optimal Control Problems, " Computers Math. Application, Vol. 23(12), 1992, pp. 83~94.
[19] Michalewicz, Z. , "Genetic algorithms + data structures = evolution programs, " 3rd edition. New York: Springer-Verlag, 1996.
[20] Ohsaki, Y. , "On the significance of phase content in earthquake ground motions, " Earthquake Engineering and Structural Dynamics, vol. 7, 1979, pp. 427-439.
[21] Tadanobu SATO, Yoshitaka MURONO and Akihiko NISHIMURA, "Phase Spectrum Modeling to Simulate Design Earthquake Motion," Journal of Natural Disaster Science, vol. 24, 2002, pp. 91-100.
[22] Tzay-Chyn Shin and Ta-liang Teng , "An Overview of the 1999 Chi-Chi, Taiwan, Earthquake," Bulletin of the Seismological Society of America, vol. 91, no. 5, 2001, pp. 895-913.
[23] G. V. Reklaitis 、A. Ravindran 、K. M. Ragsdell 著,莊勝雄 譯,工程最佳化-方法與應用(上、下冊) ,台北,1995。
[24] 王小平、曹立明,遺傳算法-理論、應用與軟件實現,西安交通大學出版社,2002。
[25] 內政部營建署,建築物耐震設計規範及解說,營建雜誌社,2005年。
[26] 李顯宏,MATLAB程式設計延伸技巧,文魁資訊,台北,2006年。
[27] 交通部,鐵路橋梁耐震設計規範,2005年。
[28] 交通部,公路橋梁耐震設計規範修訂草案之研究,2006年。
[29] 林東慶,利用傅立葉轉換預測指南宮之地震動,碩士論文,國立中央大學,桃園,2006年。
[30] 林祐川,基因演算法和類神經網路在斜張橋最佳化設計及健康診斷之應用,碩士論文,台北,2005年。
[31] 柴駿甫、鄧崇任、羅俊雄,近斷層設計地震力與設計地表運動歷時,國家地震研究中心,2000年。
[32] 陳志宗,近斷層地震動的反應特性,碩士論文,國立台北科技大學土木與防災研究所,臺北,2006年。
[33] 袁亞湘、孫文瑜,最優化理論與方法,科學出版社,2003年。
[34] 黃慶東,「近斷層地動特性與震譜特性之探討」,中華民國結構工程協會,結構工程,第十五卷,2006年,第91-133頁。
[35] 張孝德、蘇木春,機器學習:類神經網路、模糊系統、基因演算法則,全華科技圖書股份有限公司,台北,2003年。
[36] 雲慶夏,進化算法,冶金工業出版社,2000年。
[37] 潘正君、康立山、陳毓屏,演化計算,清華大學出版社,2000年。
論文全文使用權限:不同意授權