現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:分離元素法於岩石貫切破壞試驗之模擬分析 [以論文名稱查詢館藏系統]
論文英文名稱:Distinct Element Approach on Rock Indentation test [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
中文姓名:林郁修
英文姓名:Yu-Hsiao Lin
研究生學號:94428030
學位類別:碩士
語文別:中文
口試日期:2007-07-25
論文頁數:91
指導教授中文名:陳立憲
口試委員中文名:陳堯中;陳志南;張國楨
中文關鍵詞:貫切破壞分離元素法楔形刃口角度側向圍壓粒間微裂
英文關鍵詞:Indentation fracture test, Distinct element methodWedge angleLateral confinementMicro-crack
論文中文摘要:晚近台灣多遭遇於岩覆較深、長大之隧道工程,故多採用全斷面機械式鑽掘工法,是故對於隧道施工鑽掘之安全性與效率備受重視。本研究以分離元素法(Distinct Element Method)之三維數值軟體PFC3D進行模擬單一楔形刃口正向貫入岩材,並比對貫切破壞之理論模式與試驗結果進行相關研析。
經校驗微觀輸入參數與尺度敏感分析,本研究採用花崗岩及大理岩等中至高強度岩類進行數值模擬貫切破壞之行為特徵,藉由改變:(1)楔形刃口角度模擬隧道鑽掘機具刀角幾何因素;(2)水平側向圍壓以模擬側向大地應力之影響;及(3)楔形刃口貫切位置模擬接近岩材開口弱面而進行系列分析。由傳統巨觀性實驗結果得知,當楔形刃口角度漸增與水平側向圍壓越大時,受測岩材產生延性或脆性破壞所需之貫切力亦隨之增大;而臨界貫入深度分別因此遞增與遞減。與實驗比較本數值模擬結果顯示可得之定性趨勢。另再分析粒間微裂位置對應於貫切加載歷程之關係,發現隨楔形刃口角度之漸增(即由尖變鈍),其無因次化之塑性區半徑則明顯減小。於初裂後,塑性區外之粒間張力微裂累積,則隨巨觀張力裂縫長度之增長而成線性增加。再者由粒間微裂空間分佈之演化表可知,隨側向圍壓之增加,塑性區尺寸亦因此增加。此外,因楔形刀角接近開口弱面距離之減少,其最大貫切力與臨界貫入深度皆隨之降低之趨勢;亦經模擬得到頗為相符之成果。
最後將數值所求得之無因次化臨界塑性區半徑,與理論解進行比對,本研究之數值結果得到良好之對應,可驗證模擬方法之適確性。
論文英文摘要:Recently, for a tunnel can be safe and efficiency, fully cross-area and mechanical boring method for deeper and longer tunnel, such as Tunnel Boring Method(TBM), should be important in Taiwan. This study presents a numerical simulation of the normal wedge indentation of rock by using Particle Flow Code in three dimensions(PFC3D)which bases on the principle of the distinct element method(DEM) and compares numerical results with indentation test theory model and laboratory test results.
In this investigation, according to analysis of sensitivity parametric, by changing : (1) the wedge angle for modeling the cutting tools geometry, (2)the lateral confinement and (3) indentation positions by using granite and marble. In the view point of the macro-scope, the results show that the maximum indentation force increases with the increase in wedge angle and lateral confinement; and the indentation depth respectively increase and decrease. Moreover, in accordance with the micro-fracture compare with the indentation loading curve, dimensionless critical radius decrease in evidence with the wedge angle increase. After initial crack, the normal cracks accumulate numbers outside the plastic zone and the tensile cracks become the linear relation. In other hand, by the evolution of the micro-crack, when the lateral confinement increase, raise the shape of plastic zone. Furthermore, with the indentation position approach the free boundary, the indentation force and the indentation depth decrease.
At last, the numerical dimensionless critical radius is estimated and compares with the experimental results as well as the analytical solutions. Good agreement found between the simulation and previous literature in dimensionless critical radius. Therefore, this study proves that the suitability of the numerical solutions for indentation fracture.
論文目次:摘 要 i
ABSTACT iii
誌 謝 v
表目錄 iii
圖目錄 iv
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究方法與範圍 1
1.3 論文內容 2
第二章 文獻回顧 4
2.1 分離元素法之沿革 4
2.2 貫切行為特徵之研究發展 5
2.2.1 延性破壞-廣義孔洞擴展模式(Cavity expansion model, CEM) 8
2.2.2 脆性破壞-線彈性破壞力學之破裂模式(Linear elastic fracture model, LEFM) 14
第三章 PFC3D數值模擬分析方法 18
3.1 PFC3D(Particle Flow Code in 3 Dimensions)概述 18
3.2 PFC3D之假設 18
3.3 PFC3D之運算邏輯 19
3.4 PFC3D之微觀參數 20
3.4.1 顆粒元素參數 20
3.4.2 鍵結力參數 22
3.4.3 牆面元素參數 24
3.4.4 微觀參數檢核之步驟 25
3.5 PFC3D模型材料生成程序 26
第四章 數值分析、驗證與結果 33
4.1 模型幾何參數之探討 36
4.1.1 試樣尺寸外幾何之探討 36
4.1.2 顆粒元素內幾何之探討 38
4.2 微巨觀參數之校驗比對 39
4.3 參數說明 44
4.4 楔形刃口角度之影響 47
4.4.1 加載歷程曲線與巨觀破壞行為 47
4.4.2 延性破壞:貫切區域形成彈-塑界面發展之探討 51
4.4.3 脆性破壞:臨界彈-塑性界面發展與後續張力初裂與裂衍行為 66
4.5 側向邊界之影響 70
4.5.1 側向圍壓對貫切試驗之影響 70
4.5.2 側向自由邊界位置對貫切試驗特徵之影響 73
4.6 數值解與理論值之比對 77
第五章 結論與建議 80
5.1結論 80
5.2 建議 81
參考文獻 83
符號對照表 88
論文參考文獻:【1】 呂榮華,「以單顆粒勁度探討卵礫石層之抗剪強度」,碩士論文,國立中興大學土木工程研究所,台中,1999。
【2】 林雍勝,「岩石貫切破壞之圍壓與刀楔影響及其對應之聲射演化」,碩士論文,國立台灣科技大學營建工程系,台北,2006。
【3】 林宏冠,「複合圓形顆粒元素之建立與應用」,碩士論文,國立中興大學土木工程研究所,台中,1999。
【4】 張家詮,「分離元素法於擬脆性岩材微觀破裂機制之初探」,碩士論文,國立台北科技大學土木工程系,台北,2007。
【5】 唐昭榮,「利用Distinct-Element Method(DEM)探討集集地震所誘發之草嶺山崩」,中國地質學會九十四年年會學術研討會,2005。
【6】 黃國忠,「擬脆性岩石材料之破壞行為研究」,博士研究成果,台灣科技大學,2007。
【7】 楊東華,「以諧和模式及平衡模式建立顆粒材料組成律之研究」,博士論文,國立台灣工業技術學院營建工程技術研究所,台北,1995。
【8】 廖豐益,「以數值分析探討粒狀材料之破壞行為」,碩士論文,國立台灣工業技術學院營建工程技術研究所,台北,1994。
【9】 劉山宏瑋,「以非破壞耦合試驗研探類岩材料受楔型貫切破壞之側向自由邊界效應」,碩士論文,國立台灣科技大學營建工程系,台北,2007。
【10】 Alehossein, H., Detournay, E. and Huang, H., “Analytical model for the indentation of rocks by blunt tools,” Rock Mechanics and Rock Engineering, vol. 33, no. 4, pp. 267-284, 2000.
【11】 Alehossein, H. and M. Hood, “State of the art review of rock models for disk roller cutters,” In M. Aubertin, F. Hassani, and H. Mitri (Eds.), 2nd NARMS, Rock Mechanics Tools and Techniques, Montreal. Balkema, 1996.
【12】 Boussinesq, J., “Applications of potentials for the study of equilibrium and movement of elastic solids,” (in French) Paris: Gautier-Villars, 1885.
【13】 Brady, B. H. G. and Brown, E. T. Rock Mechanics for Underground Mining. Second edition., 1993.
【14】 Chen, L. H., “Failure of rock under normal wedge indentation,” Ph. D. Thesis, University of Minnesota, Minnesota, U.S.A., 2001.
【15】 Chen, Y. C., “Experimental determination of fabric for granular materials (stress rotation),” Ph. D. Thesis, Cornell University, New York, U. S. A., 1986.
【16】 Cundall P., Strack O., “A discrete numerical model for granular assemblies,” Geotechnique, vol. 29, pp. 47-65, 1979
【17】 Damjanac, B. and Detournay, E., “Numerical modelling of normal wedge indentation in rocks,” In J. J. K. Daemon and R. A. Schultz (Eds.), Proc. 35th US Rock Mechanics Symposium, pp. 349-354. Balkema, 1995.
【18】 Detournay, E., Fairhurst, C. and Labuz, J. F., “A Model of tensile failure initiation under an indentor,” In P. Rossmanith (Ed.), Proc. 2nd Int. Conf. On Mechanics of Jointed and Faulted Rock (MJFR-S), Vienna, Austria, 1995.
【19】 Drescheret, A. and Kang Y., “Kinematic approach to limit load for steady penetration in rigid-plastic soils,” Geotechnique, vol. 37, no. 3, pp. 233-246, 1987.
【20】 Erdogan, F. and Sih, G. C., ASME J. Basic Engrg, vol. 85, pp. 519-527, 1963.
【21】 Griffith, A. A., “The phenomena of rupture and flow in solids,” Phil. Trans. Ray. Soc. London A221, pp. 163-197, 1921.
【22】 Hart, R., Cundall, P., Lemons, J., “Formulation of a three-dimension distinct element model—Part II. Mechanical calculations for motion and interaction of a system composed if many polyhedral blocks,” International Journal of Rock Mechanics & Mining Science, vol. 25, pp. 117-125, 1988.
【23】 Hazzard, J., Young, R., “Simulating acoustic emissions in bonded-particle models of rock,” International Journal of Rock Mechanics & Mining Sciences, vol. 37, pp. 867-872, 2000.
【24】 Hertz, H. H., “Hertz's miscellaneous papers,” London: Macmillan, 1896.
【25】 Hoover, W., A. D. Groot, C. Hoover, I. Stowers, B. Holian, T. Boku, S. Ihara, and J. Belak, “Large-scale elastic-plastic indentation simulations via nonequilibrium molecular dynamics,” Physical Review A, vol. 42, no. 10, pp. 5844-5853, 1990, November.
【26】 Huang, H., “Discrete element modeling of tool-rock interaction,” Ph. D. Thesis, University of Minnesota, Minnesota, U. S. A., 1999.
【27】 Hazzard, J.F., Young, R.P., ” Simulating acoustic emissions in bonded-particle models of rock,” International Journal of Rock Mechanics & Mining Sciences, vol. 37, pp. 867-872, 2000.
【28】 Itasca Consulting Group Inc., “Particle flow code in three dimensions, Version 3.0,” Minneapolis: ICG., 1999.
【29】 Johnson, K. L., “The correlation of indentation experiments,” J. Mech. Phys. Solids, pp. 115-126, 1970.
【30】 Johnson, K. L., “Contact mechanics,” Cambridge University Press, 1987
【31】 Lawn, B. and Evans, A., “A model for crack initiation in elastic/plastic indentation field,” J. Mater, Sci., vol. 12, pp. 2195-2199, 1977.
【32】 Lawn, B. and Marshall, D., “Hardness, toughness, and brittleness: an bndentation analysis,” J. Amer, Ceramic Society, vol. 62, no. 7, pp. 347-350, 1979.
【33】 Lawn, B. and Swain, M., “Microfracture beneath the point indentation in brittle solids,” J. Mater. Sci., pp. 113-122, 1975.
【34】 Lawn, B. and Wilshaw, R., “Review indentation fracture: Principles and Applications,” J. Mater. Sci., vol. 10, pp. 1049-1081, 1975.
【35】 Makse, H., S. Havlin, P. Ivanov, P. King, S. Prakash, and H. Stanley, “Pattern formation in sedimentary rocks: Connectivity, permeability, and spatial correlations,” Physica A., vol. 233, no. 3-4, pp. 587-605, 1996, December.
【36】 Marsh, D., “Plastic flow in glass,” Proc. Roy. Soc. London, Ser. A A279, pp. 420-435, 1964.
【37】 Mishnaevsky(Jr.), L. L., “A brief review of soviet theoretical approaches to dynamic rock failure,” Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., vol. 30, no. 6, pp. 663-668, 1993.
【38】 Mishnaevsky(Jr.), L. L., “Physical mechanisms of hard rock fragmentation under mechanical loading: A review,” Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., vol. 32, no. 8, pp. 763-766, 1995.
【39】 Ponton, C. B., “Vickers indentation fracture toughness test part 2 application and critical evaluation of standardised indentation toughness equations,” Materials Science and Technology, vol. 5, no. 10, pp. 961-976, 1989.
【40】 Potyondy, D., Cundall, P., ”A bonded-particle model for rock,” International Journal of Rock Mechanics & Mining Science, vol. 41, pp. 1329-1364, 2004.
【41】 Shimada, S. and N. Ikawa, “Molecular dynamics analysis of nanometric metal cutting mechanism,” In H. Kitagawa, T. A. Jr., and Y. Kawazoe (Eds.), Mesoscopic Dynamics of Fracture: Computational Materials Design, pp. 63-75, Springer, 1998.
【42】 Timoshenko, S. P. and Goodier, J. N., “Theory of elasticity (3rd ed.),” New York, NY: McGraw-Hill.
【43】 Wang, C., Tannant, D., Lilly, P., “Numerical analysis of the stability of heavily jointed rock slopes using PFC2D,” International Journal of Rock Mechanics & Mining Sciences, vol. 40, pp. 415-424, 2003.
【44】 Whittaker, B. N., Singh, R. N. and Gexin, Sun., “Rock fracture mechanics principles,” Design and Applications, Developments in Geotechnical Engineering, 71, Elsevier, 570 p., 1992.
【45】 Zietlow, W. K. (Univ. of Minnesota); Labuz, J. F., “Measurement of the intrinsic process zone in rock using acoustic emission,” International Journal of Rock Mechanics and Mining Sciences, vol. 35, no. 3, pp. 291-299, 1998.
論文全文使用權限:同意授權於2008-08-30起公開