現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:磨耗與邊界效應對岩石貫切破壞之數值模擬 [以論文名稱查詢館藏系統]
論文英文名稱:Numerical Approach to the Effect of Wear Flat and Lateral Boundary Conditions on Indentation Fracture in Rock [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
出版年度:97
中文姓名:蘇億峰
英文姓名:I-Feng Su
研究生學號:94428025
學位類別:碩士
語文別:中文
口試日期:2008-01-15
論文頁數:84
指導教授中文名:陳立憲
口試委員中文名:壽克堅;張國楨;彭嚴儒
中文關鍵詞:岩石貫切磨耗效應側向邊界雙刀效應
英文關鍵詞:Normal wedge indentation fractureAbrasion effectLateral boundaryDouble-cutter effect
論文中文摘要:山岳隧道之機械式開挖可提升營建自動化及工程安全性之成效,惟因鑽掘切削之力學機制仍屬渾濛,因此常因切削刀頭之不當耗損,引致機械開挖效率不彰;又台灣地質複雜多變,隧道開挖遭遇斷層、弱面機會大增。因此對於鑽掘機具、弱面位置與岩石破壞三者間互制機理,值得深入探討。
本研究乃以二維數值軟體FLAC進行模擬楔刀正向貫入岩材之平面應變問題,藉由改變:(1) 楔刀之不同磨耗(wear flat)特徵模擬切削刀具耗損之影響,(2) 楔刀貫切位置模擬接近岩材開口弱面之行為,及(3) 楔刀貫切位置模擬接近岩材閉合弱面之行為,並試圖由上述三課題與理論解、實驗數據進行相關比對研析。
由數值分析得知,隨楔刀磨耗增加,受測岩材產生臨界塑性區所需之最大貫切力因之增加,而臨界貫入深度微增,故材料韌度亦因之增加;再者,無側壓且具相同楔形刀角條件下,隨貫切位置漸次靠近側向自由邊界,其最大貫切力與相對應之臨界貫入深度有隨之下降的趨勢;而依相對力量比、能量比、塑性面積比受側向自由邊界影響之敏感程度,求驗特定貫切條件下之臨界轉換區;另於漸次靠近側向束制邊界之控制變數下,其最大貫切力與相對應之臨界貫入深度有隨之上升的趨勢。另在束制邊界之模擬可簡化解析雙刀效應;即求算某一臨界刀距下,其脆性破壞所需最大貫切力之變動範圍,探求單刀轉為雙刀之應力重疊行為。由此得知,適當之刀距安排應有助於機械開挖能量之減耗。
論文英文摘要:Mechanical excavation in underground tunneling construction improves automatic efficiency as well as engineering safety. The cutting process, however, needs to understand better such that the inappropriate abrasion due to cutter’s indentation and scratch can be reduced. Especially, the frequency meeting some discontinuous geological conditions under tunnel cutting, such as jointed rocks or faults is quite often. Therefore, the interaction between the cutter and the position of weak plane during cutting becomes important in studying the mechanism of rock fragmentation in Taiwan.
This study presents a numerical approach simulating a plane problem under the normal wedge indentation in rock. By investigating three parts: (1) the effect of wear flat of indenter on the cutting abrasion, (2) the response under changing the position of cutter distanced from lateral free boundary to simulate opened joint situation and/or ripple cutting behavior, (3) the response under changing the position of cutter distanced from lateral fixed boundary to simulate closed joint situation and/or double-cutter effect, the numerical results then compares with related theoretical solutions and experimental data.
This analytical approach shows that, as increasing the wear flat of indenter, the maximum indentation force needed to develop critical plastic zone increases and its corresponding critical penetration enlarges slightly. It means that the ductility/toughness of rock-like material increases with adding wear flat. Moreover, under same wedge angle of indenter without lateral confinement, the closer the distance between indenter and lateral free boundary, the less the maximum indentation force and critical penetration. The transit zone regarding the critical distance between indenter and lateral free boundary can be determined with respect to the indentation force ratio, energy ratio, as well as plastic region ratio. In addition, as near the distance between indenter and lateral fixed boundary, the more the maximum indentation force and critical penetration. The final simulation with regard to the lateral fixed boundary can also be employed to examine the double-cutter effect by monitoring a rapid increase of maximum indentation force due to stress overlap under a critical cutter-to-cutter space. It implies that a proper cutter array in front of the cutting machine may save energy during the tunnel excavation.
論文目次:目 錄

摘 要 i
ABSTRACT iii
謝 誌 v
目 錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究方法及範圍 1
1.3 論文架構與分章概述 2
第二章 文獻回顧 4
2.1 貫切破壞之沿革 5
2.2 延性破壞-孔洞擴展模式(Cavity expansion model, CEM)6
2.2.1 基本假設 6
2.2.2 應力場分析 8
2.3 脆性破壞-線彈性破壞力學 11
2.4 貫切破壞之影響因素 14
2.4.1 側向自由邊界之影響 14
2.4.2 磨耗效應之影響 15
2.4.3 雙刀效應之影響 18
第三章FLAC數值軟體介紹 19
3.1 理論背景 19
3.1.1 拉格朗日法 19
3.1.2 有限差分法 19
3.2 FLAC軟體概述 19
3.3 FLAC運算原理 20
3.4 組合律之模式 21
3.5 FLAC基本指令 22
3.6 FLAC分析流程 24
第四章 貫切破壞之數值模擬與分析 27
4.1 貫切破壞模型建立與驗證 27
4.1.1 貫切破壞參數說明 27
4.1.2 數值模型驗證與材料參數設定 30
4.2 磨耗效應之影響 34
4.2.1 加載歷程與巨觀破壞行為 35
4.2.2 彈-塑性界面發展之探討 37
4.2.3 數值與理論解之核驗 40
4.3 側向邊界之影響 41
4.3.1側向自由邊界之影響 41
4.3.1.1 加載歷程與巨觀破壞行為 41
4.3.1.2 彈-塑性區界面發展之探討 44
4.3.2 側向束制邊界之影響 49
4.3.2.1 加載歷程與破壞形式 49
4.3.2.2 彈-塑性界面發展之探討 52
4.3.2.3 側向束制邊界應用於雙刀效應之初探 55
第五章 結論與建議 63
5.1 結論 63
5.2 建議 66
參考文獻 67
附錄A Flamant solution作二維半無限域彈性行為之邊界尺寸驗核71
附錄B 岩材拉力強度之非線性推估 74
附錄C 變化楔形刀角與側向自由邊界比對貫切破壞之行為 76
附錄D 委員意見回覆表 79
符號對照表 83
論文參考文獻:【1】 李昶佑,「應用電子點紋干涉術探討岩石貫切過程之破壞演化及破裂特徵」,碩士論文,國立台北科技大學土木工程系,台北,2007。
【2】 肖樹芳、楊淑碧,「岩體力學」,北京:地質出版社,第72-73頁,1987。
【3】 林郁修,「分離元素法於岩石貫切破壞試驗之模擬分析」,碩士論文,國立台北科技大學土木工程系,台北,2007。
【4】 林雍勝,「岩石貫切破壞之圍壓與刀楔影響及其對應之聲射演化」,碩士論文,國立台灣科技大學營建工程系,台北,2006。
【5】 胡光宇,「複合式非破壞檢測佐探類岩材料於單刀與雙刀之破壞機制」,碩士論文,國立台北科技大學土木工程系,台北,2007。
【6】 楊琳琰,「岩石於正向貫切破壞試驗之數值模擬-以單一楔形刃口為例」,碩士論文,國立台北科技大學土木工程系,台北,2007。
【7】 蔡昇哲,「應用非破壞檢測之聲射法於岩石貫切破壞試驗之探討」,碩士論文,國立台灣科技大學營建工程系,台北,2005。
【8】 劉峵瑋,「以非破壞耦合試驗研探類岩材料受楔型貫切破壞之側向自由邊界效應」,碩士論文,國立台灣科技大學營建工程系,台北,2007。
【9】 劉波、韓彥輝,「FLAC原理、實例與應用指南」,北京:人民交通出版社,第1版,2005。
【10】 鄺寶山,「花蓮大理岩在圍壓下力學行為之研究」,碩士論文,國立台灣大學土木工程學系,台北,1992。
【11】 Alehossein, H. and Hood, M., “State-of-the-art review of rock models for disk roller cutters,” In M. Aubertin, F. Hassani, and H. Mitri (Eds.), 2nd NARMS, Rock Mechanics Tools and Techniques, Montreal, Balkema, pp.693–700, 1996.

【12】 Detournay, E., Huang, H. and Alehossein, H., “Analytical model for the indentation of rocks by blunt tools,” Rock Mechanics and Rock Engineering, vol. 33, no. 4, pp.267-284, 2000.
【13】 Bishop, R. F., Hill, R. and Mott, N. F., “The theory of indentation and hardness tests,” Proc. Phys. Soc. 57, pp.147-159, 1945.
【14】 Boussinesq, J., “Applications of Potentials for the Study of Equilibrium and Movement of Elastic Solids (in French),” Paris: Gautier-Villars, 1885.
【15】 Brady, B. H. G. and Brown, E. T., “Rock Mechanics for Underground Mining,” Second edition., 1993.
【16】 Chen, L. H., “Failure of rock under normal wedge indentation,” Ph. D. Thesis, University of Minnesota, Minnesota, U.S.A., 2001.
【17】 Chen, L. H. and Labuz, J. F., “Indentation of rock by wedge-shaped tools,” Int. J. Rock Mech. Min. Sci., vol.43, pp.1023-1033, 2006.
【18】 Damjanac, B. and E. Detournay., “Numerical modelling of normal wedge indentation in rocks,” In J. J. K. Daemen and R. A. Schultz (Eds.), Proc. 35th US Rock Mechanics Symposium, Balkema, pp.349–354, 1995.
【19】 Detournay, E., Fairhurst, C. and Labuz, J. F., “A model of tensile failure initiation under an indenter,” personal discussion, 1995.
【20】 Drescher, A. and Kang, Y., “Kinematic Approach to Limit Load for Steady Penetration in Rigid-plastic Soils,” Geotechnique, vol.37, no.3, pp.233-246, 1987.
【21】 Erdogan, F. and Sih, G. C., ASME J. Basic Engrg, 85, pp.519-527, 1963.
【22】 Griffith, A. A., “The phenomena of rupture and flow in solids,” Phil. Trans. Ray. Soc. London A221, pp.163-197, 1921.
【23】 Hertz, H. H., “Hertz's miscellaneous papers,” London: Macmillan, 1896.
【24】 Huang, H., Damjanac, B. and Detournay, E., “Normal Wedge Indentation in Rocks with lateral Confinement,” Rock Mechanics and Rock Engineering, vol.31, no.2, pp.81-94, 1998.
【25】 Huang, H., “Discrete Element Modeling of Tool-Rock Interaction,” Ph. D. Thesis, University of Minnesota, Minnesota, U. S. A., 1999.
【26】 Itasca Consulting Group, “Flac User Manual,” Minneapolis, Minnesota, 2000.
【27】 Johnson, K. L., “The Correlation of Indentation Experiments,” J. Mech. Phys. Solids, pp.115-126, 1970.
【28】 Johnson, K. L., “Contact Mechanics,” Cambridge University Press, 1987.
【29】 Lawn, B. and Wilshaw, R., “Review indentation fracture: Principles and Applications,” J. Mater. Sci., vol.10, pp.1049-108, 1975.
【30】 Lawn, B. and Marshall, D., “Hardness, Toughness, and Brittleness: an Bndentation Analysis,” J. Amer. Ceramic Society, vol.62, no.7, pp.347-350, 1979.
【31】 Marsh, D., “Plastic Flow in Glass,” Proc. Roy. Soc. London, Ser. A A279, pp.420-435, 1964.
【32】 Mishnaevsky(Jr.), L. L., “A Brief Review of Soviet Theoretical Approaches to Dynamic Rock Failure,” Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., vol.30, no.6, pp.663-668, 1993.
【33】 Mishnaevsky(Jr.), L. L., “Physical Mechanisms of Hard Rock Fragmentation under Mechanical Loading: A review,” Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., vol.32, no.8, pp.763-766, 1995.
【34】 Liu, H. Y., Kou, S. Q., Lindqvist, P.-A. and Tang, C. A., “Numerical simulation of rock fragmentation process induced by indenters,” Int. J. Rock Mech. Min. Sci., vol.39, pp.491-505, 2002.
【35】 Tan, X., Lindqvist, P.-A. and Kou, S., “Application of a splitting fracture model to the simulation of rock indentation subsurface fractures,” Int. J. Numer. Anal. Methods Geomech., 21, pp.1-13, 1997.
【36】 Tan, X., Kou, S. and Lindqvist, P.-A., “Application of the DDM and fracture mechanics model on the simulation of rock breakage by mechanical tools,” Eng Geol, 49, pp.277-284, 1998.
【37】 Timoshenko, S. P. and Goodier, J. N., “Theory of Elasticity (3rd ed.),” New York, NY: McGraw-Hill, 1969.
【38】 Whittaker, B. N., Singh, R. N. and Gexin, Sun., “Rock fracture mechanics principles,” Design and Applications, 1992.
論文全文使用權限:同意授權於2009-02-14起公開