現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:克服衝擊載重不連續之擬動態實驗技術 [以論文名稱查詢館藏系統]
論文英文名稱:Pseudodynamic Technique for Overcoming Load Discontinuity at End of Impulse [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
出版年度:97
中文姓名:楊青昊
英文姓名:Ching-hao Yang
研究生學號:95428016
學位類別:碩士
語文別:中文
口試日期:2008-07-04
論文頁數:153
指導教授中文名:張順益
口試委員中文名:簡文郁;尹世洵
中文關鍵詞:擬動態實驗時間步長外力不連續
英文關鍵詞:pseudodynamic testtime stepdiscontinuity in impulse
論文中文摘要:在傳統的擬動態試驗過程中,為了克服衝擊載重作用結束時外力不連續所引起的振幅誤差,往往被迫採取較小的積分時間步長,此積分時間步長可能遠小於滿足精確度的要求。然而,使用較小的積分時間步長經由逐步積分法所求得的位移增量也會變小,當位移增量小於或接近於量測儀器解析度的範圍可能會造成不正確的試驗結果。因此,在本研究中主要是以在衝擊載重結束後增加一小步積分時間步長的方式來減少由於外力不連續所引起的振幅誤差。經由數值模擬與擬動態試驗的結果可以發現只要此一小步的積分時間步長夠小,便可以有效的減小因外力不連續所引起的誤差。
論文英文摘要:In the traditional pseudodynamic tests, it is found that a very small time step, which might be smaller than that required for accuracy consideration in a period, is generally needed to reduce the extra amplitude distortion from an impulse as a load discontinuity occurs at the end of the impulse. However, a small time step might lead to a very small displacement increment, which might be small than the resolution of the displacement transducer. As a result, the displacement increment cannot be accurately imposed upon the specimen due to the limited resolution of the displacement transducer and inaccurate responses will be obtained. Alternatively, this difficulty might be overcome if a small time step is additionally performed right after the end of the impulse so that the extra amplitude distortion caused by the discontinuity can be reduced. Both numerical experiments and actual pseudodynamic tests attested to the extra amplitude distortion caused by the load discontinuity at the end of the impulse can be effectively reduced by conducting an extra small time step right after the end of the impulse. Hence, reliable shock responses can be obtained form pseudodynamic tests.
論文目次:中文摘要 i
英文摘要 ii
誌 謝 iii
目 錄 iv
表目錄 vi
圖目錄 viii
第一章 緒 論 1
1.1研究動機與目的 1
1.2 文獻回顧 2
1.3 研究內容 3
第二章 逐步積分法 4
2.1 簡介 4
2.2 逐步積分法穩定條件與精確度 5
2.3 逐步積分法中衝擊載重結束不連續所引起的誤差 8
2.3.1 理論解 8
2.3.2 Newmark外顯式積分法的理論解 9
2.4 克服衝載不連續的技巧 11
2.4.1 增加一小步之外顯式積分法的數值解 11
2.4.2 結果比較 12
第三章 數值模擬 20
3.1數值釋例一 20
3.2數值模擬二 22
第四章 擬動態試驗的誤差 55
4.1 擬動態試驗誤差的來源 55
4.2位移增量被雜訊或實驗誤差掩蓋之數值釋例 59
第五章 衝擊載重之擬動態試驗 77
5.1擬動態試驗 77
5.2 擬動態試驗的流程 78
5.3 試驗儀器與設備 79
5.3.1 試驗裝置 79
5.3.2 控制系統與量測裝置 79
5.4 實際的擬動態試驗 80
5.4.1 試驗步驟 81
5.5 擬動態試驗結果 82
5.5.1 位移增量被試驗誤差掩蓋之試驗結果 82
5.5.2 單自由度小變形反應 83
5.5.3 單自由度大變形反應 85
5.5.4 單自由度非線性反應 87
第六章 結論與建議 149
6.1 結論 149
6.2 建議與展望 150
參考文獻 151
論文參考文獻:[1]Bertero, V.V. et al. Use of Earthquake Simulators and Large-Scale Loading Facilities, Proceedings, Workshop on ERCBC, University of Berkeley,1978.
[2]Belytschko, T., and Hughes, T.J. R., Computational methods for transient analysis, New York : North-Holland, 1983.
[3]Clough, R. W., and Penzien, J. , Dynamics of structures, New York: McGraw-Hill, 1993.
[4]Chopra, A. K., Dynamics of structures : theory and applications to earthquake engineering, Englewood Cliffs, N.J. : Prentice Hall, 1995.
[5]Chen, C.C., and Robinson, A.R., “Improved time-history analysis for structural dynamics calculations I: treatment of rapid variation of excitation and material nonlinearity,” Journal of Engineering Mechanics, vol. 119, no. 12, 1993, pp.2496-2513.
[6]Chang, S.Y., “Accuracy of Time History Analysis of Impulse,” Journal of Structural Engineering, ASCE, Vol. 1239, No3, pp.357-372, 2003.
[7]Chang, S.Y., “A Technique for Overcoming Rapid Changes of Dynamic Loading in Time History Analysis,” Journal of the Chinere Institute of Civil and Hydraulic Engineering, Vol. 9, No3, pp.389-398, 1997.
[8]Chang, S.Y., K.C. Tsai and K. C. Chen, “Improved Time Integration for Pseudodynamic Tests,” Earthquake Engineering and Structural Dynamics, Vol.27, pp.711-730, 1998.
[9]Chang, S.Y., “Shock Response form Pudodynamic Test,” Peer Review Paper, 2008.
[10]Chang, S.Y., “Explicit Pudodynamic Algorithm with Unconditional Stability,” Journal of Engineering Mechanics, ASCE, Vol. 128, No9, pp.935-947, 2002.
[11]Hughes, T.J.R., The finite element method : linear static and dynamic finite element analysis, Englewood Cliffs, N.J. : Prentice-Hall,1987.
[12]Karwinkler, H. “Experimental Research Needs,” Proceedings Work-shop on ERCBC, University of California, Berkeley, 1978.
[13]Shing, P.B. and Mahin, S.A., “Experimental Error Propagation in Pseudodynamic Testing,” Report No. UCB/EERC-83/12, Earthquake Engineering Research Center, University of California at Berkeley, June, 1983.
[14]Shing, P.B. and Mahin, S.A., “Pseudodynamic Test Method for Seismic Performance Evaluation: Theory and Implementation”, Report No. UCB/EERC-84/01, Earthquake Engineering Research Center, University of California at Berkeley, January, 1984.
[15]Takanashi, K., et al., “Nonlinear Earthquake Response Analysis of Structure by a Computer-Actuator On-Line System”, Bull. of Earthquake Resistant structure Research Center, Institute of Industrial Science, University of Tokyo, No. 8, 1975.
[16]Takanashi, K., Ohi, K., “An Improvement of On-Line Computer Test Control Method,” Proceedings of Ninth World Conference on Earthquake Engineering August 2-9, 1988, Tokyo-Kyoto, JAPAN (Vol.Ⅵ).
[17]Zienkiewicz,O.C, The finite element method, London; New York : McGraw-Hill, 1977.
[18]張順益,”擬動態試驗”, 中華民國結構工程學會,結構工程,第十一卷,第四期,第79~84頁,中華民國八十五年十二月。
[19]張順益,”擬動態實驗之發展概況”,科學發展月刊,第二十七卷,第一期,第29~37頁,中華民國八十八年一月。
[20]張順益,”擬動態試驗在地震工程上之應用”,土木技術,四月號,第十四期,第51~59頁,中華民國八十八年四月。
[21]張順益,”動量平衡運動方程式”,中國土木水利工程學刊,第十三卷,第三期,第629~635頁,中華民國九十年十二月。
[22]張順益,”無條件穩定外顯式積分法之發展”, 中國土木水利工程學刊,第十三卷,第一期,第61~70頁,中華民國九十年四月。
[23]張順益、蔡克銓和陳冠州,”對時間積分之運動方程式在擬動態試驗上之應用” 中國土幕水利工程學刊,第九捲,第四期,第617~625頁,中華民國八十六年十二月。
[24]張順益,”積分型擬動態試驗之誤差傳播”,中國土幕水利工程學刊,第十一卷,第三期,第441~449頁,中華民國八十八年九月。
[25]張糸涵,「歷時分析中克服衝擊載重不連續的技巧」,碩士論文,台北科技大學土木與防災研究所,2004。
[26]蔡金盛,「擬動態試驗在衝擊反應的應用」,碩士論文,台北科技大學土木與防災研究所,2005。
論文全文使用權限:不同意授權