現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:FLAC耦合PFC2D應用於雙楔刀貫切破壞之初探 [以論文名稱查詢館藏系統]
論文英文名稱:Coupled FLAC/PFC2D Numerical Simulation to Indentation Fracture in Rock by Double Wedge Indenters [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
出版年度:97
中文姓名:江明軒
英文姓名:Ming-Hsuan Chiang
研究生學號:95428040
學位類別:碩士
語文別:中文
口試日期:2008-07-22
論文頁數:91
指導教授中文名:陳立憲
口試委員中文名:張國楨;彭嚴儒;陳志南
中文關鍵詞:FLACPFC貫切破壞機械開挖
英文關鍵詞:FLACPFCIndentation fractureThe machinery excavation
論文中文摘要:近來隧道工程多採用機械開挖,故提升鑽掘效率與施工安全性同等重要。參考相關工程實務及理論分析中,機械開挖多以簡化貫切破壞試驗作為之探索刃口對地質材料之互制行為,由於數值軟體FLAC為連體力學之架構探究,其功能除探求材料破壞形式與變形外,且於模擬運算速度上較其他數值軟體為快,但其缺點為無法完整模擬出試體破壞後之行為,故本研究首先建立FLAC(有限差分法)與PFC2D(分離元素法)同步執行模擬運算之耦合機制,藉由PFC2D可顯示裂縫發展趨勢之優點進行雙楔形刃口正向貫入岩材之模擬,並與文獻相關試驗結果進行比對研析。
本研究採用花崗岩(Lac du Bonnet Granite)之高強度岩材進行模擬,以楔形刃口角度150°及變化雙刃口之間距進行貫壓之系列研析。數值結果可由傳統巨觀行為察知,雙刃口間距較大時(Sr 3),刃口下方之延、脆性破壞演化趨勢不受另一鄰近刃口影響;反之,則有其互制效應。當雙刃刀距超過此一臨界間距時,則可視為單一楔形刃口之貫切破壞模式。而在微觀方面可由PFC所得結果之觀察,其塑性區張、剪微裂縫發展亦受臨界間距之影響。
藉由上述研究可知,當雙刃間距逐漸靠近時,其所需引致貫切脆性破壞之能量將逐步上升至1倍。另外,相對刀距(Sr)之臨界值為3時,其開裂行為將受應力區重疊之影響使裂縫偏離中心軸往兩側延伸,由此得知此趨勢可提升鑽掘開挖之效益。綜合以上討論可知,適當之刀距安排除有助於機械開挖能量之減耗外,亦可提升開挖效率。
論文英文摘要:Many of the underground excavation and tunnel engineering projects were designed by using mechanical excavation in Taiwan currently due the concerns of excavating efficiency and the construction security. However, this type of cutting process is not quite clear yet in terms of its contact mechanism to break rock. After referring to some literature reviews, this study therefore simplifies this cutting problem as two normal wedge cutting tools indented into an intact rock to make a fragmentation due to brittle fracture. Meanwhile, a coupling numerical algorism by linking a finite different method, so-called FLAC for continuum solids, to another distinct element code, so-named PFC2D for discrete packing materials is established to investigate the effect of doubled-indenters on the indentation fracture in the quasi-brittle material.
By penetrating into a high strength rock, Lac du Bonnet granite without lateral confinement, two adjacent indenters with same wedge angle of 150° are used in this approach. By varying the relative space between these two indenters (Sr), which is defined by the real space between indenters over the critical plastic radius induced by a single indenter, the effect of doubled-indenters on the indentation fracture can be examined through monitoring the maximum indentation force and its corresponding penetration depth numerically. In viewing the macroscopic behavior, the ductile and brittle failure tendency is influenced insignificantly by another neighbor wedge as long as Sr is larger than 3. On the other hand, the fracture characteristics by a single indentation then would be affected by another one also. As the two adjacent indenters draws closely, the microscopic failure aspects including the critical plastic zone and the development of micro-cracks can be changed significantly. The critical relative space Sr,c can then be determined. Note that the absorbed energy during indentation can even increase as large as double when Sr,c is reaching or less. Moreover, when Sr is less than critical value of Sr,c, the more bias of the orientation of the crack initiation from the vertical axis occurs as decreasing Sr.
This study depicts a suitable spacing arrangement between indenters may reduce the energy required to break rock, and may improve the efficiency during real excavating. .
論文目次:中文摘要 i
英文摘要 iii
誌謝 v
目錄 vi
表目錄 x
圖目錄 x
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究方法及範圍 1
1.3 論文架構與分章概述 2
第二章 文獻回顧 4
2.1 貫切破壞之沿革 4
2.2 貫切行為之理論模式 6
2.2.1 延性破壞-孔洞擴展模式(Cavity Expansion Model, CEM) 6
2.2.2 脆性破壞-線彈性力學之破裂模式(Linear Elastic Fracture Model, LEFM) 10
2.3 貫入行為之影響因素 14
2.3.1 刃口幾何形狀之影響 14
2.3.2 雙刀效應之影響 16
2.4 數值耦合機制之發展 17
第三章 數值軟體之分析方法 19
3.1 FLAC概述 19
3.1.1 FLAC運算原理 20
3.1.2 組合律模式 21
3.1.3 基本指令介紹及分析流程 23
3.2 PFC2D概述 27
3.2.1 PFC2D之基本假設 27
3.2.2 PFC2D之參數介紹 28
3.2.3 PFC2D運算流程 30
3.3 FLAC耦合PFC2D之說明 32
第四章 數值模擬與分析 34
4.1 數值耦合機制概述 34
4.2 模型建立之方法 37
4.2.1 FLAC模型建立與參數介紹 37
4.2.2 PFC2D模型建立與參數介紹 38
4.2.3 耦合方式之介紹 41
4.3 數值模型驗證 47
4.3.1 單壓試驗 47
4.3.2 巴西試驗 53
4.4 雙楔刀貫切破壞之模擬 60
4.4.1 貫切破壞參數說明 60
4.4.2 數值模型建立與材料參數設定 62
4.4.3 雙刀間距之影響 64
第五章 結論與建議 71
5.1 結論 71
5.2 建議 73
參考文獻 74
附錄A 材料之數值耦合 80
附錄B 巴西試驗模擬(耦合方式) 82
附錄C 委員意見回覆表 85
符號對照表 88
論文參考文獻:【1】 王紹宇,「分離元素法於接觸破壞之刀刃磨耗與雙刀效應之模擬暨耦合有限差分法之數值初探」,碩士論文,國立台北科技大學土木工程系,台北,2008。
【2】 李昶佑,「應用電子點紋干涉術探討岩石貫切過程之破壞演化及破裂特徵」,碩士論文,國立台北科技大學土木工程系,台北,2007。
【3】 林郁修,「分離元素法於岩石貫切破壞試驗之模擬分析」,碩士論文,國立台北科技大學土木工程系,台北,2007。
【4】 林雍勝,「岩石貫切破壞之圍壓與刀楔影響及其對應之聲射演化」,碩士論文,國立台灣科技大學營建工程系,台北,2006。
【5】 胡光宇,「複合式非破壞檢測佐探類岩材料於單刀與雙刀之破壞機制」,碩士論文,國立台北科技大學土木工程系,台北,2007。
【6】 楊琳琰,「岩石於正向貫切破壞試驗之數值模擬-以單一楔形刃口為例」,碩士論文,國立台北科技大學土木工程系,台北,2007。
【7】 蔡昇哲,「應用非破壞檢測之聲射法於岩石貫切破壞試驗之探討」,碩士論文,國立台灣科技大學營建工程系,台北,2005。
【8】 劉峵瑋,「以非破壞耦合試驗研探類岩材料受楔型貫切破壞之側向自由邊界效應」,碩士論文,國立台灣科技大學營建工程系,台北,2007。
【9】 劉波、韓彥輝,「FLAC原理、實例與應用指南」,北京:人民交通出版社,第1版,2005。
【10】 蘇億峰,「磨耗與邊界效應對岩石貫切破壞之數值模擬」,碩士論文,國立台北科技大學,台北,2008。
【11】 Alehossein, H. and Hood, M., “State-of-the-art review of rock models for disk roller cutters,” In M. Aubertin, F. Hassani, and H. Mitri (Eds.), 2nd NARMS, Rock Mech. Tools Tech., Montreal, Balkema, pp. 693-700, 1996.
【12】 Alehossein, H., Detournay, E. and Huang, H., “Analytical model for the indentation of rocks by blunt tools,” Rock Mech. Rock Eng., vol. 33, no. 4, pp. 267-284, 2000.
【13】 Bishop, R. F., Hill, R. and Mott, N. F., “The theory of indentation and hardness tests,” Proc. Phys. Soc. 57, pp. 147-159, 1945.
【14】 Boussinesq, J., “Applications of potentials for the study of equilibrium and movement of elastic solids (in French),” Paris: Gautier-Villars, 1885.
【15】 Brady, B. H. G.. and Brown, E. T., “Rock mechanics for underground mining,” Second edition., 1993.
【16】 Cai, M., Kaiser, P. K., Morioka, H., Minami, M., Maejima, T., Tasaka, Y. and Kurose, H., ”FLAC/PFC coupled numerical simulation of AE in large-scale underground excavations,” Int. J. Rock Mech. Min. Sci., vol. 44, pp. 550-564, 2007.
【17】 Chen, L. H., “Failure of rock under normal wedge indentation,” Ph. D. Thesis, University of Minnesota, Minnesota, U.S.A., 2001.
【18】 Chen, L. H. and Labuz, J. F., “Indentation of rock by wedge-shaped tools,” Int. J. Rock Mech. Min. Sci., vol. 43, pp. 1023-1033, 2006.
【19】 Damjanac, B. and E. Detournay., “Numerical modelling of normal wedge indentation in rocks,” Int. J. J. K. Daemen and R. A. Schultz (Eds.), Proc. 35th US Rock Mechanics Symposium, Balkema, pp. 349–354, 1995.
【20】 Detournay, E., Fairhurst, C. and Labuz, J. F., “A model of tensile failure initiation under an indenter,” personal discussion, 1995.
【21】 Diego, M., Mountaka, S. Lynda, D. and Pascal, B., “Induced seismicity in a salt mine environment evaluated by a coupled continuum-discrete modelling,” Post-Mining, pp. 16-17, 2005.
【22】 Drescher, A. and Kang, Y., “Kinematic approach to limit load for steady penetration in rigid-plastic soils,” Geotechnique, vol. 37, no. 3, pp. 233-246, 1987.
【23】 Erdogan, F. and Sih, G.. C., ASME J. Basic Engrg, vol. 85, pp. 519-527, 1963.
【24】 Fakhimi, A., “Application of slightly overlapped circular particles assembly in numerical simulation of rocks with high friction angles,” Eng. Geo., vol. 74, pp. 129-138, 2004.
【25】 Griffith, A. A., “The phenomena of rupture and flow in solids,” Phil. Trans. Ray. Soc. London A221, pp. 163-197, 1921.
【26】 Hertz, H. H., “Hertz's miscellaneous papers,” London: Macmillan, 1896.
【27】 Huang, H., Damjanac, B. and Detournay, E., “Normal wedge indentation in rocks with lateral confinement,” Rock mechanics and rock engineering, vol. 31, no. 2, pp. 81-94, 1998.
【28】 Huang, H., “Discrete element modeling of tool-rock interaction,” Ph. D. Thesis, University of Minnesota, Minnesota, U. S. A., 1999.
【29】 Huang, H., and Detournay, E., “Intrinsic length scales in tool-rock indentaction,” Int. J. Geomech, vol. 8, no. 1, pp. 39-44, 2008.
【30】 Itasca Consulting Group, “FLAC User Manual,” Minneapolis, Minnesota, 2000.
【31】 Itasca Consulting Group, “PFC2D User Manual,” Minneapolis, Minnesota, 2002.
【32】 Johnson, K. L., “The correlation of indentation experiments,” J. Mech. Phys. Solids, pp. 115-126, 1970.
【33】 Johnson, K. L., “Contact Mechanics,” Cambridge University Press, 1987.
【34】 Kabele, P., Yamaguchi, E. and Horii, H., ”FEM-BEM superposition method for fracture analysis of quasi-brittle structures,” Int. J. Fracture, vol. 100, pp. 249-274, 1999.
【35】 Kamalian, M., Jafari, M. K., Sohrabi-bidar, A., Razmkhah, A. and Gatmiri, B., “Time-domain two- dimensional site response analysis of non-homogeneous topographic structures by a hybrid BE/FE method,” Soil Dyn. Earthquake Eng., vol. 26, pp. 753-765, 2006.
【36】 Lawn, B. and Wilshaw, R., “Review indentation fracture: principles and applications,” J. Mater. Sci., vol. 10, pp. 1049-108, 1975.
【37】 Lawn, B. and Marshall, D., “Hardness, toughness, and brittleness: an bndentation analysis,” J. Amer. Ceramic Society, vol. 62, no. 7, pp. 347-350, 1979.
【38】 Liu, H. Y., Kou, S. Q., Lindqvist, P.-A. and Tang, C. A., “Numerical simulation of rock fragmentation process induced by indenters,” Int. J. Rock Mech. Min. Sci., vol. 39, pp. 491-505, 2002.
【39】 Mandal, J. J. and Ghosh, D. P., “Short communication prediction of elastic settlement of rectangular raft foundation-A coupled FE-BE approach,” Int. J. Numer. Anal. Meth. Geomech., vol. 23, pp. 263-273, 1999.
【40】 Marsh, D., “Plastic flow in Glass,” Proc. Roy. Soc. London, Ser. A A279, pp. 420-435, 1964.
【41】 Mishnaevsky(Jr.), L. L., “A brief review of soviet theoretical approaches to dynamic rock failure,” Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., vol. 30, no. 6, pp. 663-668, 1993.
【42】 Mishnaevsky(Jr.), L. L., “Physical mechanisms of hard rock fragmentation under mechanical loading: A review,” Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., vol. 32, no. 8, pp. 763-766, 1995.
【43】 Padron, L. A., Aznarez, J. J. and Maeso, O., “Dynamic analysis of piled foundations in stratified soils by a BEM-FEM model,” Soil Dyn Earthquake Eng., vol. 28, pp. 333-346, 2008.
【44】 Potyondy, D., Cundall, P., ”A bonded-particle model for rock,” Int. J. Rock Mech. Min. Sci., vol. 41, pp. 1329-1364, 2004.
【45】 Sekine, H., Yan, B. and Yasuho, T., “Numerical simulation study of fatigue crack growth behavior of cracked aluminum panels repaired with a FRP compsite patch using combined BEM/FEM,” Eng. Fracture Mech., vol. 72, pp. 2549-2563, 2005.
【46】 Spyrakos, C. C. and Xu, C., “Seismic soil-structure interaction of massive flexible strip-foundations embedded in layered soils by hybrid BEM-FEM,” Soil Dyn. Earthquake Eng., vol. 23, pp. 383-389, 2003.
【47】 Tan, X., Lindqvist, P.-A. and Kou, S., “Application of a splitting fracture model to the simulation of rock indentation subsurface fractures,” Int. J. Numer. Anal. Methods Geomech., vol. 21, pp. 1-13, 1997.
【48】 Tan, X., Kou, S. and Lindqvist, P.-A., “Application of the DDM and fracture mechanics model on the simulation of rock breakage by mechanical tools,” Eng. Geol, vol. 49, pp. 277-284, 1998.
【49】 Timoshenko, S. P. and Goodier, J. N., “Theory of elasticity (3rd ed.),” New York, NY: McGraw-Hill, 1969.
【50】 Wanne, T., Johansson, E. and Potyondy, D., “Final coupled 3D thermo-mechanical modeling, preliminary particle-mechanical modeling.”
S. K. B. Rapport, R-04-03, 2004.
【51】 Whittaker, B. N., Singh, R. N. and Sun, G. “Rock fracture mechanics principles,” Design and Applications, 1992.
論文全文使用權限:同意授權於2018-12-31起公開