現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:開發同步化聲光非破壞檢測於類岩材料受雙刀式貫切破壞之研析 [以論文名稱查詢館藏系統]
論文英文名稱:A Study of Indentation Fracture in Rock-like Material under Doubled-indenters Associated with Synchronization of Acoustic and Optic Nondestructive Techniques [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
出版年度:97
中文姓名:金昆翰
英文姓名:Kun-Han Chin
研究生學號:95428039
學位類別:碩士
語文別:中文
口試日期:2008-07-22
論文頁數:121
指導教授中文名:陳立憲
口試委員中文名:陳堯中;壽克堅;林世聰
中文關鍵詞:雙刀效應聲射電子點紋干涉術同步化裂縫開口位移
英文關鍵詞:Effect of double wedge-shaped edgeAcoustic emissionElectronic speckle pattern interferometrySynchronizationCrack opening displacement
論文中文摘要:因台灣地質構造變異性大,於隧道開挖時遭遇破裂帶、節理及斷層等不連續弱面之機率加大。又審視機械式鑽掘機開鑿隧道案例眾多,旨在提升工程自動化與安全性之考量,惟就其機械開挖之施工效率,仍待相關學理佐助,方得窺其工程進度之良窳,故本文乃由雙刀式機械開挖之影響進行評估,冀對開挖效能作適確的評估,以增進鑽掘切削岩體之破壞機制之理析。調查重點為變化楔刀間距因雙刀效應之影響,造成岩體接觸破壞之不同變形與力量(或能量)的區判,藉以評核鑽掘機械開挖效率之良窳。
本研究乃由工程鑽掘之多刀楔切削斷面,簡化模擬為雙刀楔之正向貫壓。而受壓材則採用水泥砂漿之類岩材料,在瞭解貫切相關之破壞機理下,於無側壓方式變化兩刀距但能同時接觸完整岩材(intact rock)之狀態,探討機械開挖之功效。本實驗研究試以巨觀和微觀之裂縫發展前、後,及其對應之力學特徵作一關照詮釋,其在可調整兩楔形刀口間距之貫壓位置下,採用裂縫開口位移(COD)控制求得完整之加載歷程,以進行破壞演化之觀察。而本研究所使用之觀察工具之一為非破壞聲射(AE)檢驗以量測微震裂源之定位,並同步控制電子點紋干涉術(ESPI)之破壞特徵,於自行開發之自動化同步擷取動態之聲、光兩非破壞檢測數據,以佐助貫切破壞試驗之定量觀測。
自動控制乃採NI公司之LabVIEW軟體,作為同步化(Synchronization)整合介面,先對聲光非破壞檢測與破壞性試驗之時序(time series)資料作比對而取得所需數據作為研究分析。經擷取程式時間同步處理後,將非破壞聲射法之微震裂源定位,與電子點紋干涉術之外部破壞特徵觀察結果比對以評定延性破壞的彈-塑性區;和脆性破壞的峰前變形不連續(Displacement Discontinuous)之生、衍演化暨裂尖微塑區發展,再與相關離散元素法及有限元素法之數值解析作一驗證。首次得到自動同步化聲射與光電干涉之非破壞檢測技術之適確結果。
論文英文摘要:Because of the high geologic structure changeability in Taiwan, some underground excavating difficulties such as meeting the fissuring zone, jointed rock mass and fault may raise frequently. The mechanical tunnel excavation, therefore, becomes important for concerning its advantages of automatic efficiency and construction safety. However, the mechanism of cutting process or so-called contact mechanics is not quite clear so far. To evaluate the cutting efficiency in the viewpoint of force and energy required to break rock, this paper hence presents the mechanical cutting effect of doubled-indenters on indentation-typed excavation by varying the space between indenter to indenter, . Meanwhile, coupled nondestructive techniques of acoustic emission (AE) as well as electronic speckle pattern interferometry (ESPI) are synchronized to monitor the evolution of fracture automatically during the normal wedge indentation tests in rock-like, quasi-brittle material.
By controlling the feedback signals of the crack opening displacement (COD) in a closed-loop hydraulic loading system, the entire loading curve can then be carried out in cement mortar. The experimental results show the microscopic evolution of ductile failure followed by brittle fracture in real-time, whole-field, high resolution from ESPI images corresponding to the locations of microseismic sources from AE. Furthermore, both the displacement continuity and displacement discontinuity, which are not identical to pre- and post-peak, can then be identified. In other words, both (1). the development of plastic zone and localization of the microcracking growth at the stage of ductile failure, and (2). the onset of crack evolved from the localization and crack propagation at the stage of brittle failure can be examined respectively. Note that the programming to synchronize both data of ESPI and AE is written in LabView 8.0 software in the laboratory. This is the first automatic synchronization of coupled ESPI and AE nondestructive techniques.
Finally, this study summarizes the value of critical space ( ), critical elastoplastic interface, and crack initiation/propagation experimentally, which are reasonable and agreeable by comparing with numerical simulation of coupled distinct element (PFC2D) and finite element method (FLAC).
論文目次:中文摘要 i
英文摘要 iii
誌謝 v
目錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1研究動機 1
1.2研究目的 1
1.3研究範圍與方法 2
1.4論文內容概述 3
第二章 文獻回顧 5
2.1貫切試驗之發展 5
2.2貫切試驗之相關理論 8
2.2.1貫切試驗之延性理論-孔洞擴展模式(Cavity expansion model, CEM) 8
2.2.2 破壞力學之脆性理論-線彈性破壞力學(Linear Elastic Fracture Mechanics, LEFM) 12
2.2.3 裂端微塑區之探討 15
2.2.4 雙刀效應之影響 18
2.3耦合非破壞檢測技術之沿革 18
2.3.1非破壞檢測之聲射技術發展 18
2.3.1.1聲射基本原理 19
2.3.1.2聲射定位準則 22
2.3.2非破壞檢測之電子點紋干涉術發展 24
第三章 實驗架構 27
3.1實驗材料 28
3.2試驗設備 31
3.2.1破壞試驗之貫切儀器架設 31
3.2.2非破壞檢測之聲射儀器設置 36
3.2.3非破壞檢測之電子點紋干涉儀器設置 38
3.2.4耦合非破壞檢測之軟體應用 40
3.3試驗方法與流程 43
3.3.1校正檢驗 43
3.3.2不同楔刀間距之貫切破壞試驗 49
3.4試驗參數說明 52
第四章 試驗結果與研析 56
4.1雙楔刀效應對巨觀破壞行為發展之影響 60
4.1.1雙楔刀對加載歷程峰前標稱貫切壓力之影響 61
4.1.2雙楔刀對加載歷程峰前最大貫切力之影響 63
4.1.3不同楔刀間距之裂衍特徵 64
4.2雙楔刀效應對微觀破壞行為之發展 67
4.2.1雙楔刀對微震裂源與加載歷程之關係 67
4.2.2雙楔刀效應對彈-塑性界面發展之影響 77
4.2.3聲射震源之分佈特徵 80
4.3整合非破壞檢測之成果展現 83
4.3.1彈-塑性界面之比對 84
4.3.2裂端微塑區之探討 87
4.4實驗與理論數值解析之驗證 89
第五章 結論與建議 93
5.1結論 93
5.1.1雙刀效應 93
5.1.2整合同步化之非破壞檢測 94
5.2建議 95
5.2.1試驗材料部份 95
5.2.2破壞試驗部份 95
5.2.3非破壞檢測部份 95
參考文獻 97
附錄A 校正實驗及相關資料與照片 101
附錄B 委員意見回覆表 115
符號對照表 119
論文參考文獻:[1]小林英男,「破壞力學」,龍璟文化,台北,2002。
[2]王紹宇,「分離元素法於接觸破壞之刀刄磨耗與雙刀效應之模擬暨耦合有限差分法之數值初探」,碩士論文,國立台北科技大學土木工程系,台北,2008。
[3]江明軒,「FLAC耦合PFC2D應用於雙楔刀貫切破壞之初探」,碩士論文,國立台北科技大學土木工程系,台北,2008。
[4]李昶佑,「應用電子點紋干涉術探討岩石貫切過程之破壞演化及破裂特徵」,碩士論文,國立台北科技大學土木工程系,台北,2007。
[5]李佳龍,「音洩定位法於岩石材料之應用」,碩士論文,國立成功大學資源工程學系,台南,2003。
[6]吳建宏、張健峰,「黑色片岩異向性與室內預應力之研究」,地下開挖與防災之創新科技研究成果發表研討會論文集,2007。
[7]林郁修,「分離元素法於岩石貫切破壞試驗之模擬分析」,碩士論文,國立台北科技大學土木工程系,台北,2007。
[8]林雍勝,「岩石貫切破壞之圍壓與刀楔影響及其對應之聲射演化」,碩士論文,國立台灣科技大學營建工程系,台北,2006。
[9]林建志,「水泥砂漿材料強度參數c、φ值之研究」,碩士論文,國立台北科 技大學土木與防災研究所,2002。
[10]胡光宇,「複合式非破壞檢測佐探類岩材料於單刀與雙刀之破壞機制」,碩士論文,國立台北科技大學土木工程系,台北,2007。
[11]陳家豪,「巴西試驗之音射定位分析研究」,岩盤工程研討會論文集,2004。
[12]黃兆龍,「混凝土性質與行為-第三版」,詹氏書局,台北,2002。
[13]廖志信,「岩石材料中音射發生源之位置探測研究」,碩士論文,國立成功大學土木工程系,台南,1993。
[14]蔡昇哲,「應用非破壞檢測之聲射法於岩石貫切破壞試驗之探討」,碩士論文,國立台灣科技大學營建工程系,台北,2005。
[15]劉峵瑋,「以非破壞耦合試驗研探類岩材料受楔型貫切破壞之側向自由邊界效應」,碩士論文,國立台灣科技大學營建工程系,台北,2007。
[16]蘇億峰,「磨耗效應與側向邊界對岩石貫切破壞之數值模擬」,碩士論文,國立台北科技大學土木工程系,台北,2008。
[17]Alberto, C. and Stefano, I., “Numerical Analysis of the Cutting Interaction between Indenters acting on Disordered Materials,” Int. J. of Frac., vol.131, pp.141-154, 2005.
[18]Almenara, R. and Detournay, E., “Cutting Experiments in Sandstones with Blunt PDC Cutters,” In Proc. EuRock, vol.92, pp.215-220, Thomas Telford, London, 1992.
[19]Berthelot, J. M., “Frequency Analysis of Acoustic Emission Signals in Concrete,” J. of A. E., vol.11, no.1, pp.11-18, 1993.
[20]Boussinesq, J., “Applications of Potentials for the Study of Equilibrium and Movement of Elastic Solids (in French),” Paris: Gautier-Villars, 1885.
[21]Bray, D. E. and McBride., “Acoustic Emission Technology,” Nondes. T. Tech., pp.345-377, John Wiley & Sons Inc, 1992.
[22]Chen, L. H., “Failure of Rock under Normal Wedge Indentation,” Ph. D. Thesis, University of Minnesota, Minnesota, U.S.A., 2002.
[23]Chen, L. H. and Labuz, J. F., “Indentation of Rock by Wedge-Shaped Tools,” Int. J. of Rock Mech. & Min. Sci., 2006.
[24]Damjanac, B. and E. Detournay., “Numerical Modelling of Normal Wedge Indentation in Rocks,” In J. J. K. Daemen and R. A. Schultz (Eds.), Proc. 35th US Rock Mechanics Symposium, Balkema, pp.349-354, 1995.
[25]Detournay, E., Fairhurst, C. and Labuz, J. F., “A Model of Tensile Failure Initiation under an Indentor,” In P. Rossmanith (Ed.), Proc. 2nd Int. Conf. On Mech. of Jointed and Faulted Rock (MJFR-S), Vienna, Austria, 1995.
[26]Detournay, E., Huang, H. and Alehossein, H., “Analytical Model for the Indentation of Rocks by Blunt Tools,” Rock Mech. and Rock Eng., vol.33, no.4, pp.267-284, 2000.
[27]Fowler, T. J., “Acoustic Emission of Fiber Reinforced Plastics,” J. of the Tech. Councils of ASCE: Proceedings of the ASCE, vol.105, no.2, pp.281-289, 1979.
[28]Gabor, D., “A New Microscopic Principle,” Nature, vol.161, pp.777-778, 1948.
[29]Griffith, A. A., “The Phenomena of Rupture and Flow in Solids,” Phil. Trans. Ray. Soc. London A221, pp.163-197, 1921.
[30]Hertz, H. H., “Hertz's Miscellaneous Papers,” London: Macmillan, 1896.
[31]Holcomb, D. J. and Costin, L. S., “Detecting Damage Surface in Brittle Materials using Acoustic Emission,” ASME J. Appl. Mech., vol.53, pp.536-544, 1986.
[32]Huang, H., Damjanac, B. and Detournay, E., “Normal Wedge Indentation in Rocks with Lateral Confinement,” Rock Mech. and Rock Eng., vol.31, no.2, pp.81-94, 1998.
[33]Huang, H. and Detournay, E., “Intrinsic Length Scales in Tool-Rock Interaction,” Int. J. of Geo., Vol.8, no.1, pp.39-44, 2008.
[34]James, D. L., “Acoustic Emission Investigation into Some Concrete Construction Problems,” J. of A. E., vol.8, no.1-2, pp.s322-s325. World Meeting on Acoustic Emission, 1989.
[35]Johnson, K. L., “The Correlation of Indentation Experiments,” J. Mech. Phys. Solids, pp.115-126, 1970.
[36]Johnson, K. L., “Contact Mechanics,” Cambridge University Press, 1987.
[37]Kaiser, J., “Undersuchungen Uber Das Aufrterten Geraucchen Beim Zevgersuch,” Ph. D Thesis. Technische Hochschule, Munich, 1953.
[38]Labuz, J. F. and Bridell, J. M., “Reducing Frictional Constraint in Compression Testion Through Lubrication,” Int. J. of Rock Mech. and Min. Sci., vol.30, no.4, pp.451-455, 1983.
[39]Labuz, J. F. and Biolzi, L., “Experiments with Rock: Remarks on Strength and Stability Issues,” Int. J. of Rock Mech. and Min. Sci., vol.44, pp.525-537, 2007.
[40]Landis, C., “Automated Determination of First P-Wave Arrival and Acoustic Emission Source Location,” J. of A. E., vol.10, no.1-2, pp.s97-s103, 1991/1992.
[41]Lawn, B. and Wilshaw, R., “Review Indentation Fracture: Principles and Applications,” J. Mater. Sci., vol.10, pp.1049-108, 1975.
[42]Lawn, B. and Marshall, D., “Hardness, Toughness, and Brittleness: An Bndentation Analysis,” J. Amer. Ceramic Society, vol.62, no.7, pp.347-350, 1979.
[43]Leith, E. N. and Upatnieks, J., “Reconstructed Wavefronts and Communication Theory,” J. Opt. Soc. Am., vol.52, pp.1123-1130, 1962.
[44]Lin, S. T., Hsieh, C. T. and Hu, C. P., “Two Holographic Blind-Hole Methods for Measuring Residual Stress,” Exp. Mech., vol.34, pp.141-147, 1994.
[45]Liu, H., “Numerical Modelling of the Rock Fracture Process under Mechanical Loading,” Ph. D. Thesis, Department of Civil and Mining Engineering Luleå University of Technology, Sweden, 2002.
[46]Maji, A. K., Wang, J. L. and Lovato, J., “Electronic Speckle Pattern Interferometry for Fracture Mechanics Testing,” Exp. Tech., vol.15, no.3, pp.19-23, 1991.
[47]Maji, A. K., “Acoustic Emissions from Reinforced Concrete,” Exp. Mech., vol.34, no.4, pp.379-388, 1994.
[48]Marsh, D., “Plastic Flow in Glass,” Proc. Roy. Soc. London, Ser. A A279, pp.420-435, 1964.
[49]Mishnaevsky(Jr.), L. L., “A Brief Review of Soviet Theoretical Approaches to Dynamic Rock Failure,” Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., vol.30, no.6, pp.663-668, 1993.
[50]Mishnaevsky(Jr.), L. L., “Physical Mechanisms of Hard Rock Fragmentation under Mechanical Loading: A Review,” Int. J. of Rock Mech. Min. Sci. & Geomech. Abstr., vol.32, no.8, pp.763-766, 1995.
[51]Ohtsu, M., “Acoustic Emission Characteristics of Concrete and Fundamental Mechanisms,” Ph. D. Thesis, Kyoto University, 1982.
[52]Timoshenko, S. P. and Goodier, J. N., “Theory of Elasticity (3rd ed.),” New York, NY: McGraw-Hill, 1969.
論文全文使用權限:同意授權於2011-08-21起公開