現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:LabVIEW應用於自動化土壤三軸 K0試驗系統之開發 [以論文名稱查詢館藏系統]
論文英文名稱:Development of an Automatic K0 Triaxial Testing System with LabVIEW [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
出版年度:97
中文姓名:林琬芳
英文姓名:Wang-Fang Lin
研究生學號:94428006
學位類別:碩士
語文別:中文
口試日期:2008-07-07
論文頁數:148
指導教授中文名:魏敏樺
口試委員中文名:盧之偉;吳博凱
中文關鍵詞:LabVIEW自動化系統三軸試驗壓密
英文關鍵詞:LabVIEWAutomatic SystemTriaxial TestK0Consolidation
論文中文摘要:隨著精密儀器和自動化控制科技的日新月異,著手進行三軸自動化系統的構建,以利工程實務上之需,是一項重大的突破,除了截取傳統三軸儀器的優點外,更利用先進的軟體撰寫,加深了自動化系統對大地工程界的影響。其中包含有硬體設備(感應、處理、控制單元)和管理軟體(計讀、分析、回饋)組合而成之伺服系統,以期在試驗上達到簡便、有效、精確的目的。土壤三軸 試驗是一門先進的試驗技術,國內針對此方向的研究甚少,但其重要性在大地工程的實務中已佔有不可輕忽的地位。
本研究先於本校自行研發一套可進行土壤 試驗之自動化三軸儀器。配合圖控程式LabVIEW7.1的數據擷取及回饋控制,達成在實驗室內模擬現地土層的自然壓密行為,以求得靜止土壓力係數 值。為保持試體側向不變形之 狀態( ),除了要選擇高解析度的量測儀器和控制系統外,對於偵測試體之體積變化、調整三軸室內之圍壓以及壓密速率和階段時間的決定將是本系統在籌組時所考慮的主要因素。此開發出來的系統具有人性化之操作介面,可以簡便快速方式實驗,而自行撰寫之軟體也能配合試驗者之需求,隨時依需要進行修改。結果顯示,此儀器可解決人為控制操作之不便,且提供較能符合試驗過程的需要之系統;試驗求得的 值,與Jaky提出的經驗公式比較,得到極高的可靠性,也證明本系統能實際應用於工程實務上。
論文英文摘要:Abstract

Title: Development of an Automatic Triaxial Testing System with LabVIEW
School: National Taipei University of Technology, Taiwan
Institute: Civil and Disaster Prevention Engineering Pages: 148
Time: August, 2008 Degree: Master
Researcher: W. F. Lin Advisor: M. W. Gui

Keywords: LabVIEW, Automatic System, Triaxial Test,
K0 Consolidation

Due to the advancement of instrument action and automatic controlling technology, setting up an automatic triaxial testing system in a research laboratory is an important requirement. Laboratory triaxial testing is an advanced testing technique but it is rarely conducted in Taiwan but importance on Geotechnical Engineering project has been not neglect.
This reseach is to invent an Automatic traxial testing system. With graphic language LabVIEW that can use data get and controling test. It can simulate the behavior of natural consolidation of soil layers in the laboratory. It can get coefficient of earth pressure at rest value. Because of it must maintain the K0 condition of no lateral deformation ( ). Besides choose high resolution of measure instrument and controlling sytem, and to measure volume change of sample, to adjust chamber pressure of traxial cell, consolide rate and time of stage must be main factor during the develop system. This work interface of system is user-friendly, be able to use the way of simple and high-speed to test. The value of compare with Jaky equation, get higher dependability. It proves this system can apply to engineering project.
論文目次:目錄

中文摘要…………………………………………………………………………....…...i
英文摘要…………………………………………………………………………..…....ii
誌謝……………………………………………………………………………….........iii
目錄………………………………………………………………………………….....iv
表目錄…………………………………………………………………………….….....v
圖目錄……………………………………………………………………………..…..vii
第一章 緒論…………………………………………………………………………….1
1.1 研究之動機和目的 1
1.2 研究方法 2
1.3 研究內容與分章概述 3
第二章 文獻回顧……………………………………………………………………….5
2.1 介紹 ..5
2.1.1靜止土壓力係數定義 5
2.1.2 Jaky’s 方程式 6
2.1.3 Hendron’s 方程式 7
2.2 靜止土壓力係數之室內試驗法 7
2.2.1 固結試驗評估K0 7
2.2.2 三軸試驗評估K0 9
2.2.2.1改良三軸室試驗 …10
2.3 K0試驗法 13
2.4 評估靜止土壓力方程式 15
2.4.1評估正常壓密土壤(Normal Consolidation Soil)方程式 15
2.4.1.1 Mayne and Kulhawy研究 16
2.4.1.2 Sherif and Fang研究 18
2.4.2 評估過壓密土壤(Over-Consolidation Soil)方程式 19
2.4.3 評估夯實土壤(Compact Soil)方程式 22
2.4.3.1 Rowe研究 22
第三章 硬體和軟體設計與控制…………………………………………………...…24
3.1介紹 24
3.2 實驗的目的與應用 24
3.3 自動化三軸K0儀器的改良 25
3.3.1 壓力/體積伺服控制儀 26
3.3.2軸向載重儀 27
3.3.3 K0室 28
3.3.4 伺服控制器主機 ….30
3.3.5其他儀器部份 30
3.4 三軸K0儀系統的校正 31
3.4.1 壓力/體積控制系統和軸向載重儀 31
3.5 電腦自動化控制軟體 : LabVIEW 7.1 32
3.5.1介紹 32
3.5.2介面簡介 32
第四章 試驗過程與結果分析………………………………………………………...37
4.1介紹 37
4.2 K0壓密變形行為 37
4.3 試體準備 39
4.3.1試體材料種類及其製作方法 39
4.3.2 試體製作程序 40
4.3.3試體飽和方法 48
4.3.4試驗步驟 48
4.4自動化系統之程式設計 49
4.4.1 前置面板視窗(Front Diagram) 51
4.4.2 程式方塊圖視窗(Block Diagram)…………………………………....62
4.4.2.1. False介面(主程式)……………………………………….…...67
4.4.2.2. True介面(主程式) ……………………………………………77
4.5 試驗結果分析 83
4.5.1 K0壓密 83
4.5.1.1 相對密度(Dr)約為60%.............................................................85
4.5.1.2 相對密度(Dr)約為80%.............................................................98
4.5.2 CU試驗求ψ’: 110
4.5.2.1 相對密度(Dr)約為60%...........................................................111
4.5.2.2 相對密度(Dr)約為80%...........................................................117
第五章 儀器有效性評估…………………………………………………………….123
5.1 介紹…………………………………………………………………………123
5.2 儀器性能評估………………………………………………………………123
第六章 結論與建議………………………………………………………………….128
6.1 結論 ………………………………………………………………………128
6.2 建議 ………………………………………………………………………129
參考文獻……………………………………………………………………………...130
附錄A. 研究過程紀錄……………………………………………………………....136
作者簡介……………………………………………………………………………...148

















表目錄

表4.10 粒徑分佈與土壤分類…………………………………………………….......39
表4.20 各控制器的圖示與名稱………………………………………………….......54
表4.30 控制器代表的陣列數字………………………………………………….......68
表4.40 程式方塊圖之名稱……………………………………………………….......79
表4.50 對應圖4.43的程式運算式…………………………………………………..81
表4.60 加載速率0.5 kPa/min、1 kPa/min,相對密度Dr約為60%、80%的土樣….84
表4.70 Dr=60%,0.5kPa/min和1kPa/min速率下的參數比較……………………97
表4.80 Dr=80%,0.5kPa/min和1kPa/min速率下的參數比較……………………110
表5.10 Jaky (1944)經驗公式與試驗值K0比…………….……………….….…....124



圖目錄

圖1.10三軸K0試驗自動化研究流程圖 4
圖2.10沉積作用、侵蝕和再壓期間覆土應力的變化對(a)水平有效應力
(b)靜止土壓力係數K0的影響 8
圖2.20靈敏黏土在解壓和再壓期間過壓密比對K0的影響 8
圖2.30雙室三軸儀(a) Ng et al. (2002)、(b) Toyota et al. (2002) 12
圖2.40無凝聚力土壤的K0和sinψ的關係 17
圖2.50鬆砂的靜土應力分佈 18
圖2.60土壤密度與互鎖靜土應力(Lock-in at-rest pressure)………………………... 19
圖2.70理論的K0-OCR 關係顯示參數的高敏感性χ=κ1D/κ1s和
Haney黏土的數據報告做比較 21
圖2.80 Pruska (1973)理論K0-OCR的關係和半經驗公式與Hancy黏土做比較 21
圖3.10 (a)三軸K0儀系統簡圖 (b)三軸室內部管線放大圖 26
圖3.20壓力/體積伺服控制儀 27
圖3.30軸向載重儀 28
圖3.40 (a)三軸K0室的橫斷面 (b)三軸K0底座簡圖 29
圖3.50伺服控制器主機 30
圖3.60壓力/體積控制系統測定 31
圖3.80前置面板視窗(Front Diagram)>>控制面板(Controls)>>數值面板(Numeric) 33
圖3.90前置面板視窗(Front Diagram)>>控制面板(Controls)>>布林面板(Boolean) 34
圖3.10程式方塊圖視窗(Block panel)>>函數面板(Functions) 35
圖3.11程式方塊圖視窗(Block panel)>> View As Icon轉換 36
圖4.10顆粒間接觸力方向與K0壓密關係 38
圖4.20粒徑分佈曲線圖 40
圖4.30投影片法之投影片 41
圖4.40三軸底座(上加透水石和濾紙) 42
圖4.50分裂模上加鎖環,內放投影片 42
圖4.60使用漏斗將渥太華砂放入投影片中 43
圖4.70使用夯實器夯實,使試樣緊實 43
圖4.80刮毛後的情況 44
圖4.90將分裂模拆開,留下投影片包裹者試體 45
圖4.10將投影片拆開的情況 45
圖4.11套上橡皮膜、O環,再將投影片包裹其外 46
圖4.12放上頂蓋(Cap),裝上上部管線 46
圖4.13緩慢將圍壓的水經由C閥門注入三軸室內 47
圖4.14三軸室置於軸向載重機上,並確定壓力衡盒是否頂到加壓軸桿 47
圖4.15 LabVIEW程式之流程圖………………………………………………….…..53
圖4.16 LabVIEW進行偵錯工作 51
圖4.17前置面板視窗之K0設計介面…………………………………………….…..52
圖4.18 X軸Y軸圖形(內鍵有六種不同參數的關係圖) 58
圖4.19不同參數繪製的選項 58
圖4.20時間(Time)與圍壓壓力(Confine Pressure)圖(試驗進行中的2D曲線) 59
圖4.21時間(Time)與圍壓體積(Confine Volume)圖(試驗進行中的2D曲線) 59
圖4.22時間(Time)與反水壓力(Back Water Pressure)圖(試驗進行中的2D曲線) 60
圖4.23時間(Time)與反水壓體積(Back Water Volume)圖(試驗進行中的2D曲線) 60
圖4.24軸桿位移(Loading Displacement)和反水壓體積(Back Water Volume)圖
(試驗進行中的2D曲線) 61
圖4.25時間(Time)與軸桿位移(Loading Displacement)圖(試驗進行中的2D曲線) 61
圖4.26在前置面板視窗開啟程式方塊圖視窗之方法 62
圖4.27程式方塊圖視窗- K0 False介面 63
圖4.28程式方塊圖視窗- K0 True介面 63
圖4.29程式方塊圖視窗(Block Diagram) 65
圖4.30 Functions>>Structures>>Case Structure(條件結構) 65
圖4.31 Case Structure(條件結構) 66
圖4.32問號框一定要連結到布林值,否則程式無法正常運作 66
圖4.33程式未執行前之陣列(Array)的子面板 68
圖4.34 Create>>Local Variable 69
圖4.35 Edit>>Create SubVI 71
圖4.36 Create SubVI 71
圖4.37 SubVI之前置面板視窗 72
圖4.38程式方塊圖視窗(Block Diagram)>>函數(Functions)副面板>>
結構結構(Structure)副面板>>For Loop 73
圖4.39 For Loop 73
圖4.40前置面板視窗- K0 False介面之圍壓增量SubVI 74
圖4.41程式方塊圖視窗-K0 False介面之圍壓增量SubVI…………………………..76
圖4.42程式方塊圖視窗- K0 True介面…………………………………………….…77
圖4.43前置面板視窗- K0 True介面之反水壓與軸向位移轉換SubVI 80
圖4.44程式方塊圖視窗- K0 True介面之反水壓與軸向位移轉換SubVI 80
圖4.45代表圖4.43框框1 82
圖4.46代表圖4.43框框2 82
圖4.47代表圖4.43框框3 83
圖4.48 Dr約為60%,0.5kPa/min, 100kPa (a) - 圖,(b) & 圖,
(c)應力路徑圖,(d) - 圖,(e) - ln 圖,(f) - 圖,
(g)孔隙水壓圖,(h)體積應變圖 85
圖4.49 Dr約為60%,0.5kPa/min, 200kPa (a) - 圖,(b) & 圖,
(c)應力路徑圖,(d) - 圖,(e) - ln 圖,(f) - 圖,
(g)孔隙水壓圖,(h)體積應變圖 87
圖4.50 Dr約為60%,0.5kPa/min, 300kPa (a) - 圖,(b) & 圖,
(c)應力路徑圖,(d) - 圖,(e) - ln 圖,(f) - 圖,
(g)孔隙水壓圖,(h)體積應變圖………………………………..……………89
圖4.51 Dr約為60%,1kPa/min, 100kPa (a) - 圖,(b) & 圖,
(c)應力路徑圖,(d) - 圖,(e) - ln 圖,(f) - 圖,
(g)孔隙水壓圖,(h)體積應變圖…………………………………………….. 91
圖4.52 Dr約為60%,1kPa/min, 200kPa (a) - 圖,(b) & 圖,
(c)應力路徑圖,(d) - 圖,(e) - ln 圖,(f) - 圖,
(g)孔隙水壓圖,(h)體積應變圖………………………………………………93
圖4.53 Dr約為60%,1kPa/min, 300kPa (a) - 圖,(b) & 圖,
(c)應力路徑圖(d) - 圖,(e) - ln 圖,(f) - 圖,
(g)孔隙水壓圖,(h)體積應變圖 .95
圖4.54 Dr約為80%,0.5kPa/min, 100kPa (a) - 圖,(b) & 圖,
(c)應力路徑圖,(d) - 圖,(e) - ln 圖,(f) - 圖,
(g)孔隙水壓圖,(h)體積應變圖 98
圖4.55 Dr約為80%,0.5kPa/min, 200kPa (a) - 圖,(b) & 圖,
(c)應力路徑圖,(d) - 圖,(e) - ln 圖,(f) - 圖,
(g)孔隙水壓圖,(h)體積應變圖…………………………………………....100
圖4.56 Dr約為80%,0.5kPa/min, 300kPa (a) - 圖,(b) & 圖,
(c)應力路徑圖,(d) - 圖,(e) - ln 圖,(f) - 圖,
(g)孔隙水壓圖,(h)體積應變圖…………………………………………….102
圖4.57 Dr約為80%,1kPa/min, 100kPa (a) - 圖,(b) & 圖,
(c)應力路徑圖,(d) - 圖,(e) - ln 圖,(f) - 圖,
(g)孔隙水壓圖,(h)體積應變圖 104
圖4.58 Dr約為80%,1kPa/min, 200kPa (a) - 圖,(b) & 圖,
(c)應力路徑圖,(d) - 圖,(e) - ln 圖,(f) - 圖,
(g)孔隙水壓圖,(h)體積應變圖…………………………………………….106
圖4.59 Dr約為80%,1kPa/min, 300kPa (a) - 圖,(b) & 圖,
(c)應力路徑圖,(d) - 圖,(e) - ln 圖,(f) - 圖,
(g)孔隙水壓圖,(h)體積應變圖…………………………………………….108
圖4.60 0.5kPa/min (a)應力應變曲線,(b)孔隙水體積變化圖,(c) - t圖,
(d) - q圖,(e) - 圖,(f) - 圖 111
圖4.61 Dr約為60%,0.5kPa/min之( - 圖 112
圖4.62 Dr約為60%,0.5kPa/min之破壞包絡線 , 為32.2∘ 112
圖4.63 1kPa/min (a)應力應變曲線,(b)孔隙水體積變化圖,(c) - t圖,
(d) - q圖,(e) - 圖,(f) - 圖……………………………..114
圖4.64 Dr約為60%,1kPa/min之( - 圖……………………………….….115
圖4.65 Dr約為60%,1kPa/min之破壞包絡線 , 為32.1∘…………………115
圖4.66 0.5kPa/min (a)應力應變曲線,(b)孔隙水體積變化圖,(c) - t圖,
(d) - q圖,(e) - 圖,(f) - 圖……………………………..117
圖4.67 Dr約為80%,0.5kPa/min之( - 圖 118
圖4.68 Dr約為80%,0.5kPa/min之破壞包絡線 , 為34.3∘ 118
圖4.69 1kPa/min (a)應力應變曲線,(b)孔隙水體積變化圖,(c) - t圖,
(d) - q圖,(e) - 圖,(f) - 圖 120
圖4.70 Dr約為80%,1kPa/min之( - 圖 121
圖4.71 Dr約為80%,1kPa/min之破壞包絡線 , 為34.4∘ 121
圖5.1 有效排水摩擦角 & 之關係圖(渥太華砂之 值)................................136
圖5.2 正常壓密砂土 之關係………………………………………………..126
圖5.30無凝聚力土壤的 和 的關係………………………………………...127
圖A.10 試驗三軸筒示意圖………………………………………………...….....153
圖A.20 Memory2( 試驗)>>試體當量(高度和面積)、目標圍壓、
階段時間和加載階數…………………………………………………...…..143
圖A.30 TEST>>試體當量(高度和面積)、目標圍壓、加載階數、階段時間、
SAT(飽和) TEST啟動鈕、按鈕 與LED閃燈 …………………...144
圖A.40 TEST>>試體當量(高度和面積)、目標圍壓、加載階數、階段時間、
體積應變(Volume Strain)、SAT(飽和) TEST啟動鈕和LED閃燈 …………………………………………………………………………..145
圖A.50 TEST>>試體當量(高度和面積)、加載速率、加載階數、
EXECUTE (SAT(飽和) TEST啟動鈕)和LED閃燈 ………………147
論文參考文獻:[1] Abdelhamid, M. S. and Krizek, R. J. (1976), “At rest Lateral Earth Pressure of A Consolidated Clay,” Journal of Geotechnical Engineering, Vol.102, No.GT7, pp.721-738.
[2] Al-Hussaini, M.M., and Townsend, F. C. (1975),“Investigation of Testing in Cohesionless Soils,” Final Repot, Miscellaneous Paper S-77-21, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi, pp. 70.
[3] Alva-Hurtado, J. E. and Selig, E. T. (1981), “Survey of Laboratory Devices for Measuring Soil Volume Change,”Geotechnical testing Journal, Vol.4, No.1, pp.11-18.
[4] Andrawes, K. Z. and El-sohby, M. A. (1973), “Foctors Affecting Coefficient of Earth Pressure K0,”Journal of the Soil Mechanics and Foundations Division, ASCE, SM, Vol.99, No.7, pp.527-539.
[5] ASTM C-778, (1996), “Standard Specification for Standard Sand,” 2000 Annual Book of ASTM Standards, Vol. 04.08, Soil and Rock; Building Stones, ASTM, Philadelphia, PA.
[6] Atkinson, J.H., Richardson, D., and Robinson, P.J. (1987), “Compression and Extension of K0 normally consolidated Kaolin clay,” Journal of the Geotechnical Engineering, ASCE, Vol.113, No.12, pp.12, pp.1468-1481.
[7] Aversa, S. and Nicotera, M. V. (2002), “A Triaxial and Oedometer Apparatus for Testing Unsaturated Soils,” Geotechnical Testing Journal, Vol.25, No.1, pp.3-15.
[8] Bediskan, E. (1993), “Effects of Over-Consolidation Ratio on Coefficient of Lateral Earth Pressure at Rest,” METU, M. S. in Civil Engineering.
[9] Bishop, A. W. and Donald, I. B. (1961),“The Experimental Study of Partly Saturated Soil in Triaxial Apparatus,” Proceedings of Fifth International conference on soil mechanics and Foundation Engineering, Vol.1/3, pp.13-21.
[10] Brooker, E. W., and Ireland, H. O. (1965), “Earth Pressure at Rest Related to the Stress History,” Canadian Geotechnical Journal, Vol.2, pp.1-45.
[11] Campanella, R., and Vaid, Y. (1972), “A Simple K0 Triaxial Cell,”Canadian Geotechnical Journal, Vol.9, No.3, pp.249-260.
[12] Cherubine, C., Giasi, C. I., and Guadagno, F. M. (1994), “The Coefficient of Earth Pressure at Rest,” Canadian Geotechnical Journal, Vol.31, pp.790-791.
[13] Cornforth, D. H. (1973), “Prediction of Drained Strength of Sands From Relative Density Measurements,”ASTM Special Technical Publication: 523, pp.281-303.
[14] David Muir, Wood (1990), “Soil Behaviour and Critical State Soil Mechanics” Includes Bibliographical references ISBN 0-521-33249-4, 1 Soil Mechanics 1 Title, TA 710. W598.
[15] Duncan, J. M. and Seed, R. B. (1986), “Compaction-induced Earth Pressures under K0-Conditions,”ASCE, Geotechnical testing Journal, Vol.112, No.1, pp.1-22.
[16] Feda, J., (1984), “K0-Coefficient of Sand in Triaxial Apparatus,” ASCE, Geotechnical testing Journal, Vol.110, No.4, pp.519-524.
[17] Fukagawa, R., and Ohta, H. (1988), “Effect of Some Factors on K0-Value of A Sand,” Soils and Foundations, Japanese Society of Soil Mechanics and Foundations Engineering, 28(4), Dec., pp.93-106.
[18] Hendron, A. J., (1963), “The Behavior of Sand in One-Dimensional Compression, Ph. D. thesis, Department of Civil Engineering, University of Illinois(Urbana).
[19] Jaky, J. (1944), “The Coefficient of Earth Pressure at Rest,” Journal for society of Hungarian Architects and Engineers, Budapest, Hungary, Oct., pp.355-358.
[20] Kayadelen, C. (2001), “K0 Kosullarinda Yanal Zemin Basinclarin Irdelenmesi, Yuksek Lisans Tezi, Cukrova Universitesi” Adana(法文).
[21] Lade, P. V. (1988), “Automatic Volume Change and Pressure Measurement Devices for Triaxial Testing of Soils,” Geotechnical Testing Journal, Vol.11, No. 4,pp. 263-268.
[22] Ladd, C. C. (1971), “Settlement Analysis for Cohesive Soils,” Research Report R71-2, Soils Publication 272, Department of Civil Engineering, Massachusetts Institute of Technology, 107 pp.
[23] Lame, T.W., and Whitman, R.V. (1979), “Soil Mechanics SI Version”, John Wiley & Sons, New York, pp. 122-136.
[24] Leong, E. C. Agus, S. S. and Rahardjo, H. (2004), “Volume Change Measurement of Soil Specimen in Triaxial Test,” Geotechnical Testing Journal, Vol. 27, No. 1.
[25] Mayne, P. W., and Kulhawy, F. H. (1982), “K0-OCR Relationship in Soil,” Journal of Geotechnical Engineering Division, ASCE, 108(GT6), pp.851-872
[26] Mayne, P. W. and Martin, G. K. (1998), “Commentary on Marchetti Flat Dilatometer Correlations in Soils,” Geotechnical Testing Journal, J. 21, No. 3, pp.222-238.
[27] Mesri, G., and Hayat, T. M. (1993), “The Coefficient of Earth Pressure at Rest,” Canadian Geotechnical Journal, 30(4), pp.647-666.
[28] Mesri, G., Ullrich, C. R. and Choi, Y. K. (1979), “The Rate of Swelling of Over-Consolidated Clays Subjected to Unloading,” Geotechnique 28, No. 3, pp.281-307.
[29] Menzies, B. K., Sutton, H. and Davies, R. E. (1978), “A New System for Automatically Simulating K0 Consolidation K0 Swelling in the Conventional Triaxial Cell,” Discussion on this Technical Note closes 1 March.
[30] Mitachi, T. & Kitago, S. (1976), “Change in Undained Shear Strength Characteristics of Saturated Remolded Clay Due to Swelling,” Soils Foundation, Japanese Society of Soil Mechanics and Foundation Engineering 16, No. 1, pp.45-48.
[31] Moore, C. A., (1971), “Effect of Mica on compressibility of two soils,” ASCE, Geotechnical Testing Journal, Vol.108, No.6, pp.1275-1291.
[32] Morgenstern, N. R. and Eisenstein, Z. (1970), “Methods of Estimating Lateral Loads and Deformations,” In Proc. 1970 Specialty Conf. Lateral stresses in the Ground and Design of Earth Retaining Structures, ASCE, New York, NY, pp.51-102.
[33] Mroz, Z., Norris, V. A. & Zienkiewicz, O. C. (1979), “Application of an Anisotropic Hardening Model in the Analysis of Elasto-plastic Deformation of Soils,”Geotechnique 28, No.1, pp.1-34.
[34] Ng, C. W.W., Zhan, L. T., and Cui, Y. J. (2002), “A New Simple System for Measurement Volume Changes in Unsaturated Soils,”Canadian Geotechnical Journal, Vol.39, pp.757-764.
[35] Nilay Keskin, S. Arslan Tekinsoy, M. and Soner Uzundurukan. (2004), “The Effects of Over-Consolidation Ratio and Effective Stresses to the Earth Pressure at Rest at Clay Soils,”Published in Teknik Dergi, Vol. 15, No. 3 July, pp.3295-3310.
[36] Okochi, Y., and Tatsuoka, F. (1984), “Some Factors Affecting K0-Value of Sand Measured at Triaxial Cell,” Soil and Foundations, Japanese Society of soil Mechanics and Foundations Engineering, 24(3), Step, 52-68.
[37] Pender, M. J. (1978), “A Model for the Behavior of Over-consolidated soil,”Geotechnique 28, No. 1, pp.1-25.
[38] Pradhan, T. B. S., Tatsuoka, F., and Molenkamp, F. (1986), “Accuracy of Automated Volume Change Measurement by Means of A Differential Pressure Transducer,”Soils and Foundations, Vol.26, No.4, pp.150-158.
[39] Pruska, L. (1973), “Effect of Initial Stress on the Stress-Strain Relation,” Proc. 8th int. Conf. Soil Mechnical Foundation, Engng, Moscow 4, pp.26-28.
[40] Rad, N. S. and Clough, G. W. (1985), “A New Automatic Volume Change Monitoring Device, “Geotechnical Testing Journal, Vol.8, No.4, pp.179-183.
[41] Rowe, P. W. (1954), “A Stress-Strain Theory for Cohesionless Soil with Applications to Earth Pressures at Rest and Moving Walls,” Geotechnique, 4(2), pp.70-88.
[42] Seed, R. B and Duncan, J. M. (1986), “FE analyses: Compaction-induced Stresses and Deformations’’ ASCE, Geotechnical Testing Journal, Vol.112, No.1, pp.23-43.
[43] Sherif, M. A., and Koch, D. E. (1970), “ as related to soil precompression ratio.” Highway Research Record, National Academy of Sciences, Washington, D. C., No. 323, pp.39-48.
[44] Sherif, M. A., Fang, Y. S., and Sherif, R. I. (1984), “Ka and K0 Behind Rotating and Non-Yielding Walls,” Journal of Geotechnical Engineering, ASCE, 110(1), Jan., pp.41-56.
[45] Sherif, M. A., and Koch, D. E. (1970), “K0 as Related to Soil Precompression Ratio,” Highway Research Record, National Academy of Sciences, Washington, D. C., No. 323, pp.39-48.
[46] Sivakumar, V., Doran, I. G., Graham, J. and Navaneethan, T. (2002), “Relationship between K0 and Over-Consolidation Ratio: A Theoretical Approach.” Geotechnique 52, No. 4, pp.450-454.
[47] Simons, N. E. (1958), Discussion of “Test Requirement for Measuring the Coefficient of Earth Pressure at rest,” Proceedings of the Conference on Earth Pressure Problems, Brussels, Vol. III, pp. 50-53.
[48] Stewart, W. and Wong, C. K. (1985), “Temperature Effects on Volume Measurements,”Journal of Geotechnical Engineering, Vol.11, No.1, pp.140-144.
[49] Terzaghi (1925). Erdbaumechanik (in German). Vienna: Franz Deuticke, 399 pp.
[50] Toyota, H., Sakai, N., and Nishimura, T. (2001), “Effects of Stress History Due to Unsaturated and Drainage Conditions on Shear Properties of Unsaturated Cohesive Soil,”Soils and Foundations, Vol.41, No.1, 99.13-24.
[51] Tuncer, B. E. (1983), “Discussion on K0-OCR Relationship in Soil, “ASCE, Geotechnical Testing Journal, Vol.109, No.6, pp.861-864.
[52] Tuncer B. Edil, M. ASCE and Abdulmohsin W. Dhowian. (1981), “At-Rest Lateral Pressure of Peat Soils,” Journal of Geotechnical Engineering Division, Proceedings of the American Society of Civil Engineers, ASCE, Vol. 107, No. GT2, pp:200-217.
[53] Tuncer, B. E. (1983), “Discussion on -OCR relationship in soil,” Proc. ASCE, GT, Vol.109, No.6, pp.861-864.
[54] Wheeler, S. J. (1986), “The Stress-Strain Behavior of Soils Containing Gas Bubbles,” Ph.D. Thesis, Oxford University, Oxford, UK.
[55] Whittle, A. J. (1993), “Evaluation of a Constitutive Model for Over-consolidated Clays,” Geotechnique 43, No. 2, pp.289-313.
[56] Yin Jian-hua and Cheng Chun-man. (2006), “Comparison of Strain-Rate Dependent Stress-Strain Behavior K0-Consolidated Compression and Extension Tests on Natural Hong Kong Marine Deposits,” Marine Georesources and Geotechnology, 24:119-147.
[57] 小西純一、平井修三,(1980) “以三軸壓縮試驗機求砂土的 值”,第15回日本土質工學研究發表會講演集,pp.401-404(日文)。
[58] 大西有三、蘆田徹也、矢西野隆夫、小真治,(1982) “以微電腦控制自動化 壓密三軸試驗裝置”,第17回日本土質工學研究發表會講演集,pp.213-216(日文)。
[59] 大河內保彥、龍崗文夫,(1983) “室內試驗技術”,日本土質工學,土與基礎,Vol.31, No.7, pp.56-57(日文)。
[60] 大矢曉、佐藤勝英、堀之內富夫、中山榮樹,(1982) “以壓密環測定 ”,第17回日本土質工學研究發表會講演集,pp.217-220(日文)。
[61] 大河內保彥、河邊衛、龍崗文夫(1982) “黏土的長期 壓密、不排水三軸壓縮試驗”,第17回土質工學研究發表會講演集,pp.353-356(日文)。
[62] 鬼塚克忠、吉武茂樹,(1983) “夯實Masa Soil的 ”,第38回日本土木學會年次學術演講會概要集,pp.47-48(日文)。
[63] 望月秋利,(1983) “室內試驗技術”,土與基礎,日本土質工學會,Vol.31, No.7, pp.53-53(日文)。
[64] 楊清源(1988),“三軸K0壓密試驗自動化之研究”,碩士論文,國立中興大學土木工程研究所。
[65] 黃木良(1997),“土壤應力-應變性質系列研究:砂土K0壓密排水, 側向解壓行為”,碩士論文,私立中華大學土木工程研究所。
[66] 楊朝平(2000), “從砂的變形行為探討靜止土壓力係數,中國土木水利工程學刊"
[67] 陳滄江(2003),“振動夯實造成之土壓力”,博士論文,國立交通大學土木工程研究所。
[68] 林穀欽(2003),“LabVIEW基礎程式設計及應用”,全華科技圖書股份有限公司
[69] 惠汝生(2006),“LabVIEW 8.X 圖控程式應用”,全華科技圖書股份有限公司。
[70] 森協武夫、藤井秀憲、網干壽夫,(1988) “有關飽和黏土 值的研究”,日本土質工學會論文報告集,Vol.28, No.2, pp.205-215(日文)。
[71] 蘇柄源(1993),“深開挖之黏土潛變特性研究”,國立台灣工業技術學院營建工程研究所碩士論文。
論文全文使用權限:同意授權於2009-08-21起公開