現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:降雨門檻值結合颱洪預警系統之研究 [以論文名稱查詢館藏系統]
論文英文名稱:Developing the rainfall threshold of inundation risk and integrating with Flood Early Warning System [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
出版年度:97
中文姓名:曹錫榮
英文姓名:Hsi-Jung Tsao
研究生學號:95428075
學位類別:碩士
語文別:中文
口試日期:2008-07-04
論文頁數:133
指導教授中文名:朱子偉;謝龍生
口試委員中文名:謝慧民;陳彥璋;張哲豪
中文關鍵詞:HEC-HMS降雨-逕流模式降雨門檻值運動波淹水風險
英文關鍵詞:HEC-HMSrainfall-runoff modelrainfall thresholdkinematic waveflood risk
論文中文摘要:在經歷民國93年的72水災及94年612水災等重大災害後,災情顯示每逢颱風暴雨期間嘉義沿海地區不但易釀成淹水災害甚至更有發生海水倒灌的可能性。鑑於水災的發生頻仍,本研究之主要目的係建立一簡易迅速之淹水預警研判機制,並納入區域防洪設施之排水能力,以研擬當地可能發生淹水之降雨門檻值。研究進一步應用此門檻值,設計接收即時降雨監測及水情資訊,即可即時研判是否有發生淹水之風險。
研究選取嘉義縣龍宮溪排水系統為示範區。首先應用美國陸軍工兵團所發展的HEC-HMS(Hydrologic Modeling System)降雨-逕流模式,以運動波法(kinematic wave)分析龍宮溪排水系統洪峰流量,模式經檢定及驗證後之效率係數均達0.9以上,顯示模式已能掌握研究區域排水系統特性。研究再分別以不等的設計雨量模擬此排水系統之洪峰流量。當模擬之洪峰流量恰超過不同渠道通水能力及保護標準下之設計洪峰流量時,此設計雨量則訂為該通水情況或保護標準下,可能發生淹水之降雨門檻值。所訂定門檻值可對整治後渠道提供一至三級之警戒降雨量,並進一步評估各排水系統幹支線在排水特性上之優劣。
研究最後利用降雨門檻值發展即時淹水風險分析模組,將其整合於颱洪預警系統中,配合定量估計降水及預報資料,即時計算龍宮溪排水系統重要控制點各時刻之淹水風險值。系統以72水災、612水災、609水災及聖帕颱風事件分別驗證,結果顯示預警系統模擬之淹水分析皆相當接近各淹水事件之調查結果,顯示出此系統已有一定之應用價值。
論文英文摘要:The disastrous inumdations, such as 72 and 612 Flood Disasters in 2004 and 2005 respectively, induced by severe typhoons have become routine in the coastal area of Chiayi County. In addtion, the land subsidence and seawater intrusion due to the over-pumping freshwater from aquifer weaken the capability of regional drainage system. This study aims to develop a non-engineering measure(rainfall threshold)and integratie with the Flood Early Warning System (FEWS) for early evacuation and disaster prevention. The early warning mechanism is to establish the rainfall threshold that generates peak flow just over the designed capacity for each control point of the drainage system. At first the calibrated and validated HEC-HMS(Hydrologic Modeling System)model is employed to simulate the peak flows in the drainage system by kinematic wave method. The design hyetograph with rainfall depths for different return periods are the major model inputs to simulate and find the critical peak flow that just over the design value. The specific rainfall depth is therefore defined as the threshold for probably flooding. Finally, the established rainfall thresholds are applied and integrated into FEWS with the rainfall forecasting to assess the risk of flooding. The system was validated by several events including 72, 612, 609 Flood Disasters and typhoon Sepat, for the simulation results matched closely with those disaster investigations. It is therefore concluded that the system is of great value for early warning in flooding disaster alleviation and prevention.
論文目次:中文摘要 i
英文摘要 iii
誌謝 v
目錄 vi
表目錄 vii
圖目錄 ix
一、 前言 1
1.1 研究背景 1
1.2 研究目的 1
1.3 本文組織 2
二、 文獻回顧 3
2.1 淹水風險評估 3
2.2 降雨-逕流模式發展 4
2.3 視覺化查詢系統 6
三、 研究方法 7
3.1 研究流程 7
3.2 水文模式系統HEC-HMS之介紹 10
3.3 降雨門檻值及淹水風險機率計算方法 17
四、 視覺化查詢系統之開發 22
4.1 系統軟體選用 22
4.2 即時資料分析 26
4.3 應用模組 29
五、 研究流域 35
5.1 集水區概況 35
5.2 模式資料分析 38
5.3 模式建置 43
六、 結果與討論 58
6.1 檢定與驗證 58
6.2 降雨門檻值訂定 78
6.3 淹水風險機率計算 97
七、 結論與建議 127
7.1 結論 127
7.2 建議 129
參考文獻 130
論文參考文獻:[1] A. J. Askew,” Water in the International Decade for Natural Disaster Reductio,” Destructive Water: Water-caused Natural Disasters, their Abatement and Control, IAHS. Publication No. 239. 1997, pp. 3.
[2] A. S. William and J. F. Matthew, HEC-GeoHMS user’s manual, Wachington, DC: HQ U.S. Army Corps of Engineering ,2006, pp.1-278.
[3] C. Y. Chen, L. Y. Lin, F. C. Yu, C. S. Lee, C. C. Tseng, A. H. Wang and K. W. Cheung,”Improving debris flow monitoring in Taiwan by using high-resolution rainfall products from QPESUMS,” Nat. Hazards, vol. 40, 2007, pp. 447-461.
[4] C.O. Doten, L.C. Bowling, E.P. Maurer, J.S. Lanini, and D.P. Lettenmaier, “A spatially distributed model for the dynamic prediction of sediment erosion and transport in mountainous forested watersheds”, Water Resour. Res., Vol. 42, No. 4, 2006.
[5] David, Ford, Nathan Pingle and J. J. DeVries, Hydrologic Modeling System, HEC-HMS Applications Guide, Wachington, DC: HQ U.S. Army Corps of Engineering, 2002, pp.1-116.
[6] D. Feldman Arlen, Hydrologic Modeling System, HEC-HMS Technical Reference Manual, Wachington, DC: HQ U.S. Army Corps of Engineering, 2000, pp.1-157.
[7] D. Rosenfeld, D. Atlas and D. A. Short, "The estimation of convective rainfall by area integrals. Part II: The height-area threshold (HART) method,” J. Geophys. Res., 1990, pp. 95.
[8] D. Rosenfeld, D. Atlas, D. B. Wolff and E. Amitai, " Beamwidth effects on Z-R relations and area-integrated rainfall,” J. Appl. Meteor., vol. 31, 1992, pp. 454-464.
[9] D. Rosenfeld, D. B. Wolff and D. Atlas, "General probability-matched relation between radar reflectivity and rain rate,” J. Appl. Meteor., vol. 32, 1993, pp. 50-72.
[10] D. Rosenfeld, D. B. Wolff and E. Amitai, "The window probability matching method for rainfall measurements with radar,” J. Appl. Meteor., vol. 33, 1994, pp. 682-693.
[11] D. Rosenfeld, E. Amitai and D. B. Wolff, "Classification of rain regimes by the three-dimensional probabilities of reflectivity fields,” J. Appl. Meteor., vol. 34, 1995, pp. 198-211.
[12] D. Rosenfeld, E. Amitai and D. B. Wolff, " Improved accuracy of radar WPMM estimated rainfall upon application of objective classification criteria,” J. Appl. Meteor., vol. 34, 1995, pp. 212-223.
[13] J. C. Bathurst and E. P. O'Connell, Future of distributed modelling: the Système Hydrologique Européen, Royaume-Uni, Revue, 1986, pp.265-277.
[14] K. Beven and M. J. Kirkby,”A physically based ,variable contributing area model of basin hydrology,” Hydrological Sciences-Bulletin-des Sciences Hydrologiques, 1979, 24:43-69.
[15] K. Smith, Environmental Hazards: Assessing Risk and Reducing Disaster, London: Routledge, 1996, pp.36-54.
[16] L. J. Batten, “Radar observation of the atmosphere,” University of Chicago Press, 1973, pp. 323.
[17] Lewis A. Rossman, Storm Water Management Model(SWMM) User’s Manual, Cincinnati, National Risk Management Research Laboratory, 2008, pp.1-32.
[18] M. Bogdani and A. Selenica, “Catastrophic Floods and their “risk” in the rivers of Albania,” Destructive Water: Water-caused Natural Disasters, their Abatement and Control, IAHS. Publication No. 239, 1997, pp 83-85.
[19] M. B. Abbott, J. C. Bathurst, J. A. Cunge, P. E. O'Connell, J. Rasmussen, “Introduction to the European Hydrological System - Systeme Hydrologique Europeen, ' SHE ', 1: History and Philosophy of a Physically-Based, Distributed Modelling System,” Journal of Hydrology JHYDA7, Vol. 87, No. 1/2, 1986, pp. 45-59.
[20] M. Hoque Mozzammel and Abdullah and M. Shah Alam Khan,” Storm surge flooding in Chittagong city and associated risks,” International conference on destructive water, Anaheim CA , 1997, pp. 115-122.
[21] Modarres Mohammad, Risk Analysis in Engineering, USA: Taylor & Francis a CRC Press Book, Chapter 2, 2006, pp.14-32.
[22] R. A. Freeze and R. L. Harlan, “Blueprint for a physically-based, digitally-simulated hydrologic response model,” Journal of Hydrology, vol. 9, issue 3, 1969, pp. 237-258.
[23] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems.” ASME Journal of Basic Engineering, 82(Series D), 1960, pp.35-45.
[24] R. Rojas ,P. Julien and B. Johnson, A 2-Dimensional Rainfall-Runoffand Sediment Model Reference Manual, Colorado, Colorado State University, 2003, pp.1-39.
[25] R. W. Kates. and J. X. Kasperson, ”Comparative Risk Analysis of Technological Hazards (a review),” Proceedings of National Academy of Science, USA, 1983.
[26] T. E. Ologunorisa and M. J. Abawua, “Flood Risk Assessment: A Review,” J. Appl. Sci. Environ. Vol. 9 (1),2001, pp. 57-63.
[27] T. E. Ologunorisa, “An Assessment of flood vulnerability zones in the NIGER DELTA, NIGERIA,” International Journal of Environmental Studies, Vol. 61(1) ,2004, pp. 31–38.
[28] V. Lakshmanan, R. Rabin, V. DeBrunner, ”Multiscale storm identification and forecast,” Atmospheric Research, 2003, pp. 67-68.
[29] V. T. Chow, R. M. David, W. M. Larry, Applied hydrology, USA: McGraw-Hill Book Co., 1988, Part 1, pp.127-166.
[30] V. T. Chow, Open-Channel Hydraulics International ed, USA: McGraw-Hill Book Co., 1973, Chapter 3, pp.101-127.
[31] WinTR-55 Workgroup, WinTR-55 User Manual (NRCS), Washington, DC: USDA Natural Resource Conservation Service, 2002, pp.1-2.
[32] Y. K. Tung and B. C. Yen and C. S. Melching, Hydrosystems Engineering Reliability Assessment and Risk Analysis, New York: McGraw-Hill Companies, Inc., 2006, pp.19-55.
[33] 石全隆,三爺溪流域淹水潛勢及綜合治理規劃分析研究,碩士論文,國立成功大學水利及海洋工程研究所,台南,2005。
[34] 王中根、劉昌明、左其亭、劉青娥,「基於DEM的分布式水文模型構建方法」,地理科學選展,第二十一卷,第五期,2002。
[35] 行政院災害防救委員會、國家災害防救科技中心,0612豪雨水災災因勘查報告書,台灣:行政院災害防救委員會,2005。
[36] 李光敦,何瑞益,鍾逸茹,「利用降雨強度-延時-頻率曲線建立台灣地區設計雨型」,九十四年度農業工程研討會論文集,2005,第167頁。
[37] 李明旭、宋睿唐,分散式降雨-逕流模式之建立及暴雨時期流量之模擬,碩士論文,國立中央大學水文科學研究所,桃園,2004。
[38] 林國峰,「區域性設計雨型之建立及應用」,國立臺灣大學「台大工程」學刊,第九十二期,2004,第1-9頁。
[39] 吳瑞賢、王琮美,降雨條件與集水區出流量關係之探討,碩士論文,國立中央大學土木工程研究所,桃園,2005。
[40] 郭怡君,筏子溪流域減洪策略評估,博士論文,逢甲大學水利工程學系研究所,台中,2005。
[41] 張德鑫、陳為宇,三角形單位歷線之修正與探討,碩士論文,中原大學土木工程研究所,桃園,2003。
[42] 楊文衡,曾建興,「台北港海域颱風效應數值模擬研究」,第27屆海洋工程研討會論文集,台中,2005,第841-848頁。
[43] 陳志鴻,應用淹水模式評估都市區雨水下水道之效能,碩士論文,臺灣大學生物環境系統工程學研究所,台灣,2005。
[44] 陳俊安,應用HEC-HMS 探討水文模式之參數特性,碩士論文,國立屏東科技大學土木工程系,屏東,2005。
[45] 國家災害防救科技中心,0609豪雨災情綜合評估報告,台灣:國家災害防救科技中心,2006。
[46] 國家災害防救科技中心,0612豪雨水災災因勘查報告書,台灣:國家災害防救科技中心,2005。
[47] 國家災害防救科技中心,2007年國內外重大天然災害分析評估報告,台灣:國家災害防救科技中心,2007。
[48] 經濟部水利署。台灣水旱災預警作業模式推廣應用,台灣:經濟部水利署,2006。
[49] 經濟部水利署,經濟部水利署嘉義沿海地區綜合規劃報告,台灣:經濟部水利署水利規劃試驗所,2007。
[50] 經濟部水資源局、台大生工系,水文設計應用手冊,台灣:經濟部水利署,2001。
[51] 劉正川,「不同時期之開發度對集水區逕流模擬之研究」,中華水土保持學報,第三十七卷,第二期,2006,第125-142頁
[52] 歐信宏,應用HEC-HMS 模式最佳子集水區劃分之研究,博士論文,國立成功大學水利及海洋工程研究所,台南,2002。
[53] 蔡武廷、黃奕璋,極端降雨事件分散式集水區逕流模式之發展與驗證,碩士論文,國立中央大學水文科學研究所,桃園,2007。
[54] 謝奇峰,洪氾區劃設圖資需求與精度分析之研究,碩士論文,國立臺北科技大學土木與防災研究所,台北,2004。
論文全文使用權限:同意授權於2009-08-27起公開