現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:以三軸試驗探討非飽和紅土之力學行為 [以論文名稱查詢館藏系統]
論文英文名稱:A Study on the Mechanics Behavior of
Unsaturated Lateritic Soil by Triaxial Tests [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
出版年度:97
中文姓名:李世傑
英文姓名:Shih-Chieh Li
研究生學號:94428027
學位類別:碩士
語文別:中文
口試日期:2008-07-07
論文頁數:107
指導教授中文名:魏敏樺
口試委員中文名:吳博凱;盧之偉
中文關鍵詞:非飽和土壤臨界狀態破壞包絡面基質吸力紅土三軸壓密排水試驗三軸壓密不排水試驗三軸常含水量試驗
英文關鍵詞:unsaturated soilcritical statefailure envelopematric suctionlateritic soiltriaxial consolidated drained testtriaxial consolidated undrained testtriaxial constant water content test
論文中文摘要:本研究在探討非飽和殘積紅土之工程性質,以及吸力變化對非飽和土壤變形和抗剪強度特性的影響。本研究將針對林口紅土台地所取得之現地擾動土樣,製成重模試體,進行物理性質與三軸力學行為試驗,如單向度壓密、壓密不排水(CU)、壓密排水(CD)及常含水量(CW)等三軸壓縮試驗。
透過改良式三軸試驗儀,來探討在不同基質吸力下紅土之剪力強度變化情形,將不同三軸試驗結果之剪力強度做比較,再將試驗結果與前人研究進行討論與比較。本研究分兩大主軸做分析:一、得到壓密不排水(CU)試驗和常含水量(CW)的結果,與朱信安 (2004)和Yu (2006)的資料彙整,透過多元線性迴歸分析求出最佳化的破壞包絡面;二、著重於飽和土壤的臨界狀態分析,施作三軸壓密排水(CD)壓縮試驗,依試驗前後結果顯示,ν-lnp’的分佈圖在乾側面的變化較濕側面明顯。此外,紅土的臨界狀態線(CSL)在不同土壤構造下,其臨界狀態線的趨勢相似。將這些紅土相關參數應用於工程實務上,使工程設計開發更能精確地使用適當之土壤參數,並供做現地穩定性分析與破壞機制之數值模擬。
論文英文摘要:This study were discussing the properties of engineering on unsaturated residual lateritic soil, and the effects of unsaturated soil deformation and resisting shear strength due to changing suction. This study used intact and disturbed soils from Linkou terrace to make intact and remoulded specimens for triaxial tests, then proceeded some triaxial mechanical behavior tests, such as, triaxial consolidated undrained(CU) test, triaxial consolidated drained(CD) test and triaxial constant water content(CW) test.
With the improving apparatus of triaxial test, this study discussed the shear strength variation of lateritic soil under different matric suction, and compared with shear strength of different triaxial test results, then used these test results to discuss and compare with results of the former scholars.
This study divided into two major projects to make analysis: First, it obtained consolidated undrained(CU) test and constant water content(CW) test results, and then it combined with information of 朱信安(2004) and Yu (2006), finally, it used multiple linear regression analysis to find the best failure envelope; Second, it focused on critical state on saturated soil and did some triaxial consolidated drained(CD) test, according to the results of before and after testing, the variations of dry side are obviously than wet side on ν-lnp' plot. In addition, the critical state line(CSL) of the lateritic soil under the structures of different soils, the trend of its critical state line are similar. Applying the relevant parameters of the lateritic soil on the engineering design, can use the proper soil parameter accurately, and provide numerical simulation on the stability analysis and failure mechanism.
論文目次:目錄
摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 研究動機 1
1.2研究方法與內容 1
1.3 論文架構 2
第二章 文獻回顧 4
2.1 非飽和土壤之微觀特性與剪力強度理論 4
2.1.1 土壤之保水特性 4
2.1.1.1 土壤吸力與基質吸力量測 4
2.1.2 非飽和土壤之剪力強度理論 6
2.1.2.1 非飽和土壤之應力狀態 6
2.1.2.2 非飽和土壤之剪力強度定義 8
2.1.2.3 土壤有效應力的正確性 12
2.1.3 非飽和土壤的三軸試驗 13
2.1.3.1 壓密排水試驗(CD test) 14
2.1.3.2 常含水量試驗(CW test) 16
2.1.3.3 量測孔隙壓力的壓密不排水試驗(CU test) 17
2.1.4 應變速率的選擇 18
2.2 先前的紅土剪力強度研究 21
2.2.1 歷年分析的紅土物理性質及來源介紹 21
2.2.2 紅土剪力強度 22
2.3 非飽和土壤的臨界狀態理論 24
2.3.1 介紹 24
2.3.2非飽和土壤的臨界狀態特性和臨界狀態線 25
2.3.3 非飽和土壤的臨界狀態面模型—降伏面、流動法則和硬化規則的介紹 26
2.3.4 土壤在臨界狀態下的變形特徵 30
2.3.5.1 臨界狀態線與不排水剪力強度和破壞時孔隙壓力的關係 32
2.3.5.2 臨界狀態線與破壞時孔隙壓力的關係 34
2.4 Cam-clay(CC)模型和Modified Cam-clay(MCC)模型 36
2.4.1 介紹與定義 36
第三章 試驗內容與方法流程 39
3.1 土壤來源 39
3.2傳統三軸試驗 (Conventional Triaxial Test) 40
3.2.1試驗步驟 41
第四章 試驗結果分析與討論 51
4.1 紅土材料之物理特性 51
4.2 夯實試驗結果 53
4.3 土壤水分特性曲線試驗結果 54
4.3.1 壓力鍋試驗結果 54
4.3.2 鹽溶液試驗結果 55
4.4 三軸試驗結果 57
4.4.1非飽和CU試驗結果 57
4.4.2 非飽和CW試驗結果 61
4.4.3 飽和CD試驗結果 64
4.5 前人研究試驗資料結果 70
4.5.1三軸試驗資料 70
4.5.2 多元線性迴歸分析 74
4.5.3 紅土的應力路徑行為與延伸破壞包絡面 76
4.5.3.1結語 86
第五章 結論與建議 87
5.1 結論 87
5.2 建議 88
參考文獻 90
Appendix 96
A.1土壤基本物理試驗 96
A.1.1含水量試驗 (Water Content Test) 96
A.1.2阿太堡限度試驗 (Atterberg Limit Test) 96
A.1.3粒徑分佈試驗 (Grain-Size Distribution Test) 98
A.1.4比重試驗 (Specific Gravity Test) 99
A.1.5夯實試驗 (Compaction Test) 99
A.2 土壤水分特性曲線試驗 101
A.2.1壓力鍋試驗 (Pressure Plate Extractor Test) 101
A.2.2鹽溶液試驗 (Salt Solution Test) 104



表目錄
表2-1 非飽和土壤在三軸試驗中的應變速率和破壞應變 21
表2-2 紅土的強度性質 23
表2-3 非飽和土壤的臨界狀態變數 26
表3-1 非飽和土壤的各種三軸試驗 47
表4-1 試驗紅土的物理性質 51
表4-3 夯實試驗資料整理 53
表4-4 土壤特性曲線資料整理 57
表4-5 本研究各項三軸試驗的實驗條件 57
表4-6 非飽和CU試驗參數(第一組) 58
表4-7非飽和CU試驗參數(第二組) 58
表4-8 非飽和CU試驗破壞時的應力狀態(第一組) 58
表4-9 非飽和CU試驗破壞時的應力狀態(第二組) 59
表4-10非飽和三軸CW試驗參數 62
表4-11非飽和CW試驗破壞時的應力狀態 62
表4-12飽和CD試驗參數 64
表4-13飽和CD試驗破壞時的應力狀態 64
表4-14 各項三軸試驗數據整理 70
表4-15 多元線性迴歸分析參數 75
表4-16 紅土三軸試驗分析結果整理 75
表A-1 現地與試驗室土樣方法 96




圖目錄
圖1-1 研究流程 3
圖2-1 張力計的不同量測系統 5
圖2-2 AGWA-II 熱傳導感應器的斷面圖 6
圖2-3 不飽和土壤應力狀態 8
圖2-4 飽和土壤延伸的莫爾庫倫破壞包絡面 9
圖2-5 fb與基質吸力關係圖 10
圖 2-6 非線性破壞包絡線 11
圖2-7 非飽和土壤三軸試驗在破壞時的應力狀態 11
圖2-8 在p’-q圖上,四種非飽和土壤在不同基質吸力下的尖峰強度 13
圖2-9 基質吸力相同的各試體在不同淨圍壓力下進行壓密排水(CD)試驗過程中的應力路徑 15
圖2-10 淨圍壓力相同的試體在不同基質吸力下進行壓密排水(CD)試驗過程中的各應力路徑 16
圖2-11 常含水量(CW)試驗過程中的應力路徑 17
圖 2-12 壓密不排水(CU)試驗中的典型應力路徑 18
圖2-13 Dhanauri黏土的常含水量(CW)試驗中應變速率的影響 19
圖2-14 Dhanauri黏土的壓密排水(CD)試驗中應變速率的影響 20
圖2-15 非飽和土壤的破壞包絡線和降伏路徑 27
圖2-16 e-p-q空間應力—應變關係 29
圖2-17 e-p關係 29
圖2-18 兩種典型的應力應變曲線 31
圖2-19 過壓密土壤的傳統三軸不排水壓縮試驗 32
圖2-20 正常壓縮線(ncl),卸載—再加載曲線(url)和臨界狀態線(csl) 34
圖2-21 等向過壓密Weald黏土在破壞時過壓密比和孔隙壓力參數af的相互關係 36
圖2-22 在p’-q面上的Cam-clay和修正的Cam-clay降伏面 37
圖3-1 本研究之試驗流程 39
圖3-2 改良三軸試驗儀器(傳統試驗和非飽和試驗共用) 40
圖3-3 現地採樣薄管 41
圖3-4 重模土樣 42
圖3-5三軸室底座示意圖 42
圖3-6 軸轉換技術之功用 46
圖3-7 使用軸轉換技術與否的應力應變曲線比較 46
圖3-8 基質吸力隨軸向應變變化之情形 47
圖3-9 含有高進氣透水石的三軸室剖面圖 48
圖4-1 試驗紅土之粒徑分佈曲線 52
圖4-2 試驗紅土之阿太堡限度分佈圖 52
圖4-3 夯實試驗曲線 53
圖4-4 壓力鍋試驗繪製的部份土壤水分特性曲線(重模試體) 55
圖4-5(a) 完整土壤水分特性曲線(重模試體) 56
圖4-5(b) 土壤水分特性曲線之空氣進氣值、飽和含水量及殘餘含水量 56
圖4-6 非飽和CU試驗結果(第一組) 60
圖4-7 非飽和CU試驗結果(第二組) 61
圖4-8非飽和CW試驗結果 63
圖4-9飽和CD試驗結果 65
圖4-10 CD試驗應力狀態整理圖 67
圖4-11 飽和CD試驗莫爾圓圖 68
圖4-12 試驗紅土在q-p’面上的臨界狀態線 68
圖4-13(a) 乾側土壤的ν-lnp’曲線 69
圖4-13(b) 濕側土壤的ν-lnp’曲線 69
圖4-14 三軸試驗應力路徑及延伸破壞包絡面(乾側) 77
圖4-15(a) 最佳化分析的延伸破壞包絡面(乾側) 78
圖4-15(b)最佳化分析的延伸破壞包絡面(s’-τ)(乾側) 78
圖4-15(c)最佳化分析的延伸破壞包絡面(Ψ-τ)(乾側) 78
圖4-15(d)應力路徑(s’-τ)(乾側) 79
圖4-15(e) 應力路徑(Ψ-τ)(乾側) 79
圖4-16 三軸試驗應力路徑及延伸破壞包絡面(濕側) 80
圖4-17(a) 最佳化分析的延伸破壞包絡面(濕側) 81
圖4-17(b) 最佳化分析的延伸破壞包絡面(s’-τ)(濕側) 81
圖4-17(c) 最佳化分析的延伸破壞包絡面(Ψ-τ)(濕側) 81
圖4-17(d) 應力路徑(s’-τ)(濕側) 82
圖4-17(e) 應力路徑(Ψ-τ)(濕側) 82
圖4-18 三軸試驗應力路徑及延伸破壞包絡面(原狀) 83
圖4-19(a) 最佳化分析的延伸破壞包絡面(原狀) 84
圖4-19(b) 最佳化分析的延伸破壞包絡面(s’-τ)(原狀) 84
圖4-19(c) 最佳化分析的延伸破壞包絡面(Ψ-τ)(原狀) 84
圖4-19(d) 應力路徑(s’-τ)(原狀) 85
圖A-1阿太堡液限儀示意圖 97
圖A-2塑性圖 98
圖A-3黏土試體在不同乾密度和含水量條件下夯實完的顆粒結構 101
圖A-4土壤壓密試驗儀 101
圖A-5高進氣吸力值陶瓷板之原理 103
圖A-6 壓力鍋試驗示意圖 104
圖A-7壓力鍋試驗操作系統 104
圖A-8鹽溶液法概略示意圖 106
論文參考文獻:參考文獻
1. Adams, B. A. and Wulfsohn, D. (1997), “Variation of the Critical-State Boundaries of an Agriculture Soil”, European Journal of Soil Science, Vol. 48, pp. 739-758.
2. Aitchison, G. D., Ed. (1965), “Moisture Equilibria and Moisture Changes in Soil Beneath Covered Areas”, A Symp. in Print, G. D. Atichision, Ed. Australia: Butterworths, 278 pp.
3. Alonso, E. E., Gens, A., and Josa, A. (1990), “A Constitutive Model for Partly Saturated Soils”, Geotechnique, Vol. 40, No. 3, pp. 405-430.
4. ASTM D422-63 (2002) “Standard Test Method for Particle-Size Analysis of Soils.” West Conshohocken. Pa.
5. ASTM D854-98 (2002) “Standard Test Method for Specific Gravity of Soils.” West Conshohocken. Pa.
6. ASTM D1557-91 (2002) “Standard Test Method for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lb/ft3 (2,700 kN-m/m3))1.” West Conshohocken. Pa.
7. ASTM D2216-98 (2002) “Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil.” West Conshohocken. Pa.
8. ASTM D2850-95 (2002) “Standard Methods for Unconsolidated, Undrained Triaxial Compression Test on Cohesive Soils.” West Conshohocken. Pa.
9. ASTM D4318-98 (2002) “Standard Test Method for Liquid Limit, and Plasticity Index of Soils.” West Conshohocken. Pa.
10. ASTM D4767-95 (2002) “Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils” West Conshohocken. Pa.
11. ASTM D5298-94 (2002) “Standard Methods for Measurement of Soil Potential (Suction) Using Filter Paper.” West Conshohocken. Pa.
12. ASTM D6836-02 (2002) “Standard Methods for Determination of the Soil Water Characteristic Curve for Desorption Using a Hanging Column, Pressure Extractor, Chilled Mirror Hygrometer, and/or Centrifuge.” West Conshohocken. Pa.
13. Biot, M. A. (1941), “General Theory of Three-Dimensional Consolidation”, Journal of Applied Physics, Vol. 12, No. 2, pp. 155-161.
14. Bishop, A. W. and Henkel, D. J. (1957), “The Measurement of Soil Properties in the Triaxial Test”, London, Edward Arnold Ltd.
15. Bishop, A. W. (1959), “The Principle of Effective Stress”, lecture delivered in Oslo, Norway, in 1959; published in Teknisk Ukeblad, Vol. 106, No. 39, pp. 859-863.
16. Bishop, A. W. (1960), “The Measurement of Pore Pressure in Triaxial Test”, in Proc. Conf. Pore Pressure and Suction in Soils. London: Butterworths, pp. 38-46.
17. Bishop, A. W. and Donald, I. B. (1961), “The Experimental Study of Partly Saturated Soil in the Triaxial Apparatus”, in Proc. 5th Int. Conf. Soil Mech. Found. Eng. (Paris, France), Vol. 1, pp. 13-21.
18. Bishop, A. W. and Henkel, D. J. (1962), “The Measurement of Soil Properties in the Triaxial Test, 2nd ed.”, London, England: Edward Amold, 227 pp.
19. Bishop, A. W. and Blight, G. E. (1963), ‘Some Aspects of Effective Stress in Saturated and Unsaturated Soils’, Geotechnique, Vol. 13, No. 3, pp. 177-197.
20. Blight, G. E. (1965), “Shear Stress and Pore Pressures in Triaxial Testing”, Journal of the Soil Mechanics and Foundations Division 91 No.6, pp. 25-39.
21. Burland, J. B. (1964), “Effective Stresses in Partly Saturated Soils”, discussion of “Some Aspects of Effective Stress in Saturated and Partly Saturated Soils”, by Blight, G. E. and Bishop, A. W., Geotechnique, Vol. 14, pp. 65-68, Feb.
22. Chantawarangul, K. (1983), “Comparative Study of Different Procedures to Evaluate Effective Stress Strength Parameters for Partially Saturated Soils”, M. Sc. Thesis, Asia Inst. of Tech., Bangkok, Tailand.
23. Cui, Y. J. and Delage, P. (1996), “Yielding and Plastic Behaviour of An Unsaturated Compacted Silt”, Geotechnique, Vol. 46, No. 2, pp. 291-311.
24. Das, B. M. (1993) “Principles of Geotechnical Engineering” International Thomson.
25. Donald, I. B. (1961), “The Mechanical Properties of Saturated and Partly Saturated Soils with Special Reference to Negatuve Pore Water Pressure”, Ph.D. Dissertation, Univ. of London, London, England.
26. Donald, I. B. (1963), “Effective Stress Parameters in Unsaturated Soils”, in Proc. 4th Australia-New Zealand Conf. Soil Mech. Found. Eng. (Adelaide, South Australia), pp. 41-46.
27. Fredlund, D. G. (1973), “Volume Change Behavior of Unsaturated Soil”, Ph.D. dissertation, University of Alberta, Edmonton, Canada.
28. Fredlund, D. G. and Morgenstern, N. A. (1977), “Stress State Variables for Unsaturated Soils”, Journal of Geotechnical Engineering, ASCE, GT5, Vol. 103, pp. 441-446.
29. Fredlund, D. G., Morgenstern, N. A., and Widger, R. A. (1978), “The Shear Strength of Unsaturated Soil”, Canadian Geotechnical Journal, Vol. 15, No. 3, pp. 313-321.
30. Fredlund, D. G., and Rahardjo, H. (1993), “Soil Mechanics for Unsaturated Soils”, John Wiley, New York.
31. Fredlund, D. G. and Xing, A. (1994), “Equations for the Soil-Water Characteristic Curve”, Canadian Geotechnical Journal, Vol. 31, pp. 521-532.
32. Gan, J. K-M. and Fredlund, D. G. (2000), “A New Laboratory Method for the Measurement of the Unsaturated Coefficients of Permeability of Soils”, Asian Conference on Unsaturated Soils – From Theory to Practice, Singapore, 18-19 May, pp. 381-386.
33. Geiser, F. (1999), “Comportement mécanique d’un limon no saturé: étude expérimentale et modélisation constitutive”, Ph.D. Thesis, Swiss Federal Institute of Technology, Lausanne.
34. Gens, A. and Potts, D. M. (1982), “A Theoretical Model for Describing the Behaviour of Soils not Obeying Rendulic’s Principle”, Proc. 1st Int. Symp. Numer. Mod. Geomech., Zurich, pp. 24-32.
35. Gibson, R. E. and Henkel, D. J. (1954), “Influence of Duration of Tests at Constant Rate of Strain on Measured ‘Drain’ Strain”, Geotechnique, Vol. 4, pp. 6-15.
36. Gui, M. W. and Yu, C. M. (2008). “The Rate of Strength Increase of Unsaturated Lateric Soil”, Canadian Geotechnical Journal (to be pusblished).
37. Ho, D. Y. F. and Fredlund, D. G. (1982), “Increase in Strength due to Suction for Two Hong Kong Soils”, in Proc. ASCE Geotech. Conf. Eng. and Construction in Tropical and Residual Soils (Honolulu, HI), pp. 263-295.
38. Jaky, J. (1948), “Pressure in Silos”, Proc. 2nd Int. Conf. Soil Mech. and Fdn. Engng. 1, pp. 103-107.
39. Jennings, J. E. B. and Burland, J. B. (1962), “Limitations to the Use of Effective Stresses in Partly Saturated Soils”, Geotechnique Vol. 12 No. 2, pp. 125-144.
40. Khalili, N. and Khabbaz, M. H. (1998), “A Unique Relationship for χ for The Determination of The Shear Strength of Unsaturated Soils”, Geotechnique Vol. 48 No. 5, pp. 681-687.
41. Khalili, N., Geiser, F., and Blight, G. E. (2004), “Effective Stress in Unsaturated Soils, A Review with New Evidence”, International Journal of Geomechanics, Vol. 4, No. 2.
42. Maâtouk, A., Leroueil, S., and La Rochelle, P. (1995), “Yielding and Critical State of A Collapsible Unsaturated Silty Soil”, Geotechnique, Vol. 45, No. 3, pp. 465-477.
43. Mancuso, C., Vassallo, R., and Vinale, F. (2000), “Effects of Moulding Water Content on the Behaviour of an Unsaturated Silty Sand”, In Proceedings of the 1st Asain Conference on Unsaturated Soils (UNSAT-ASIA 2000), Singapore, 18-19. Edited by H. Rarhardjo, D. G.. Toll, and E. C. Leong. Balkema, Rotterdam, pp. 545-550.
44. Morrison, R. D. (1983), “Ground Water Monitering Technology: Procedures, Equipment, and Applications”, published by Timco Mfg., Inc., Prairie Du Sac, WI, 111 pp.
45. Ning, L. and William, J. L. (2004), “Unsaturated Soil Mechanics” John Wiley, New Jersey.
46. Ohmaki, S. (1982), “Stress-Strain Behaviour of Anisotropically, Normally Consolidated Cohesive Soil. Proc. 1st Int. Symp. Num. Mod. Geomech. Zurich, pp. 250-269.
47. Phene, C. J., Hoffman, G. J., and Rawlins, S. L. (1971), “Measuring Soil Matric Potential in Situ by Sensing Heat Dissipation with a Porous Body: Theory and Sensor Construction”, Proc. Soil Sci. Soc. Amer. , Vol. 35, pp. 27-32.
48. Rahardjo, H., Ong, B. H., and Leong, E. C. (2004), “Shear Strength of a Compacted Residual Soil from Consolidated Drained and Constant Water Content Triaxial Tests”, Can. Geotech. J., Vol. 41, No. 3, pp. 421-436.
49. Rampino, C., Mancuso, C., and Vinale, F. (1998), “Behavior of a Compacted Silty Sand During Suction Controlled Tests”, In Proceedings of the 2nd International Conference on Unsaturated Soils UNSAT2, Bejing, China. Vol. 1, pp. 108-113.
50. Rocscience Inc. (2005) “Online Help Manual : Phase 2 v6.0 Finite Element Analysis for Excavations and Slopes.”
51. Roscoe, K. H., Schofiled, A. N., and Wroth, C. P. (1958), “On Yielding of Soils”, Geotechnique, Vol. 8, No. 1, pp. 22-53.
52. Roscoe, K. H. and Burland, J. B. (1968), “On the Generalized Stress-Strain Behavior of ‘Wet’ Clay”, Engineering Plasticity, Heyman, J. and Leckie, F. A.(eds), Cambridge, England: Cambridge University Press, pp. 535-609.
53. Satija, B. S. (1978), “Shear Behavior of Partly Saturated Soils”, Ph.D. dissertation, Indian Inst. of Technol., Delhi, 327 pp.
54. Satija, B. S. and Gulhati, S. K. (1979), “Strain Rate for Shearing Testing of Unsaturated Soil”, in Proc. 6th Asian Reg. Conf. Soil Mech. Found. Eng. (Singapore), pp. 83-86.
55. Sun, D. A., Matsuoka, H., Yao, Y. P., and Ichihara, W. (2000), “Three-Dimensional Elasto-Plastic Model for Unsaturated Soils (UNSAT-ASIA 2000), Singapore, 18-19. Edited by H. Rahardjo, D. G. Toll, and E. C. Leong. Balkema, Rotterdam, pp. 153-158.
56. Toll, D. G. (1990), “A Framework for Unsaturated Soil Behavior”, Geotechnique, Vol. 40, No. 1, pp. 31-41.
57. Vanapalli, S. K., Fredlund , D. G., and Pufahl, D. E., and Clifton, A. W. (1996), “Model for Prediction of Shear Strength with respect to Soil Suction”, Canadian Geotechnical Journal, Vol. 31, pp. 379-392.
58. van Genuchten, M. T. (1980), ”A Closed-Form Equation for Predicting Hydraulic Conductivity of Unsaturated Soils”, Journal of Soil Science Society of America, Vol. 44, p. 892-898.
59. Wheeler, S. J. and Sivakumar, V. (1995), “An Elasto-Plastic Critical State Framework for Unsaturated Soils”, Geotechnique, Vol. 45, pp. 35-53.
60. Wood, D. M. (1990), “Soil Behaviour and Critical State Soil Mechanics”, Cambridge University Press.
61. Yu, C. M. (2006), ”A Study on the Shear Strength of Linkou Terrace Unsaturated Lateritic Soil”, MEng Thesis, National Taipei University of Technology, Taiwan.
62. 王慶麟 (1984),”林口紅土台地邊坡穩定性分析及其土壤特性之研究”,國立台灣大學土木工程學系碩士論文。
63. 朱信安 (2004),”林口台地非飽和紅土特性之研究”,碩士論文,國立台北科技大學土木與防災研究所。
64. 洪如江 (1967),”台灣北部(濁水溪以北)紅棕土之物理特性”,國科會專題研究報告。
65. 拱祥生 (1999),”降雨對不飽和土壤邊坡穩定性之影響研究”,碩士論文,國立台灣科技大學營建工程學系。
66. 涂平暉 (2006),”非飽和土的臨界狀態面模型”,華中科技大學學報(自然科學版),第34卷,第8期,pp. 113-115。
67. 馬偕醫學院(Majie Hospital) (2003),”馬偕醫學院校園整體開發建築計劃加強山坡地雜項執照審查報告書”,三椏工程顧問有限公司。
68. 陳榮河 (1990),”紅土台地坍方防治方法之綜何研究”,行政院國家科學委員會防災科技研究報告78-0414-P-002-26B號。
69. 黃隆茂 (1992),”部分飽和夯實礫石土之抗剪強度”, 碩士論文,國立中興大學土木工程研究所。
70. 張斌、屈智炯 (1991),”考慮剪脹和軟化特性的粗粒土應力—應變模型”,岩土工程學報,13(6),pp. 64-69。
71. 歐章煜 (1979),”台灣北部紅土之強度與滲透性之研究”, 碩士論文,國立成功大學土木工程學系。
72. 謝豪榮、吳建興 (1985),”林口紅土台地邊坡穩定及其土壤特性之研究”,行政院國家科學委員會防災科技研究報告73-28號。
論文全文使用權限:同意授權於2010-01-22起公開