現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:利用移動車輛於軌道與斜張橋之健康診斷 [以論文名稱查詢館藏系統]
論文英文名稱:Health Diagnosis of Track and Cable-Stayed Bridge Based on A Moving Vehicle [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:97
出版年度:98
中文姓名:唐仲瑜
英文姓名:Chung-Yu Tang
研究生學號:96428009
學位類別:碩士
語文別:中文
口試日期:2009-07-02
論文頁數:147
指導教授中文名:尹世洵
指導教授英文名:Shih-Hsun Yin
口試委員中文名:宋裕祺;洪曉慧
口試委員英文名:Yu-Chi Sung;Hsiao-Hui Hung
中文關鍵詞:有限元素法車體位移反應特徵正交分解健康診斷軌道斜張橋
英文關鍵詞:finite element methodproper orthogonal decompositionhealth diagnosistrackcable-stayed bridge
論文中文摘要:本文係以有限元素法來模擬車輛-軌道與車輛-橋梁兩種系統,並建立系統的運動方程式,接著利用時間逐步積分(time-step
integration)的技巧進行求解兩種系統各自的垂直向互制振動問題。本研究考慮軌道結構中道碴流失及鋼軌劣化兩種損傷類型;以及斜張橋結構中斜索預力損失及橋體劣化兩種損傷類型,並假設軌道與橋梁系統中,某處位置發生單一或多重損傷,進一步探討軌道和橋梁損傷對於車體位移反應之影響, 且引用了特徵正交分解( Proper Orthogonal Decomposition,簡稱P.O.D.)方法分析車體相對位移反應,進而識別出軌道和斜張橋結構系統的損傷程度、類型與位置,以達成整體軌道和斜張橋結構系統之健康診斷(health diagnosis)。
論文目次:中文摘要....................................................................................................... i
英文摘要...................................................................................................... ii
誌謝............................................................................................................. iii
目錄............................................................................................................. iv
表目錄........................................................................................................ vii
圖目錄......................................................................................................... ix
第一章 導論................................................................................................1
1.1 研究動機與目的...........................................................................1
1.2 文獻回顧.......................................................................................2
1.2.1 鐵路軌道系統文獻.............................................................2
1.2.2 列車-軌道-橋梁互制系統文獻...........................................4
1.2.3 斜張橋結構健康檢測文獻.................................................5
1.3 論文架構.......................................................................................7
第二章 軌道-車輛的振動問題...................................................................9
2.1 振動問題描述...............................................................................9
2.2 軌道系統的模擬...........................................................................9
2.3 車輛系統的模擬.........................................................................10
2.4 分析方法的介紹.........................................................................10
第三章 有限元素模型之建立...................................................................15
3.1 一般軌道元素的建立..................................................................15
3.1.1 運動方程式......................................................................15
3.1.2 形狀函數..........................................................................17
3.2 半無限長軌道元素的建立..........................................................19
3.3 車輛-軌道互制元素的建立.........................................................21
3.3.1 運動方程式......................................................................21
3.3.2 動態濃縮法......................................................................23
3.4 動力分析理論與流程................................................................25
第四章 特徵正交分解法...........................................................................32
4.1 簡介.............................................................................................32
4.2 數學理論.....................................................................................33
4.3 數值釋例.....................................................................................35
第五章 無限長軌道結構系統模擬與分析................................................41
5.1 數學模型的建立.........................................................................41
5.2 基本假設與參數定義..................................................................42
5.2.1 基本假設..........................................................................42
5.2.2 參數定義..........................................................................42
5.3 數值分析釋例.............................................................................43
5.3.1 單一損傷..........................................................................43
5.3.2 多重損傷..........................................................................48
5.3.3 速度與車體位移之關係...................................................49
第六章 斜張橋結構系統模擬與分析........................................................79
6.1 數學模型的建立.........................................................................79
6.1.1 斜索勁度等效彈簧...........................................................80
6.1.2 古典阻尼理論..................................................................83
6.1.3 斜張橋結構系統模型.......................................................85
6.2 基本假設與參數定義..................................................................85
6.2.1 基本假設..........................................................................85
6.2.2 參數定義..........................................................................86
6.3 數值分析釋例.............................................................................87
6.3.1 單一損傷..........................................................................87
6.3.2 多重損傷..........................................................................89
6.3.3 等效均佈彈簧勁度與斜索預力之關係............................90
第七章 結論與展望................................................................................140
7.1 結論...........................................................................................140
7.2 展望...........................................................................................141
參考文獻................................................................................................... 142
論文參考文獻:[1] A. D. Kerr, “Buckling of continuous supported beams,” Journal of Engineering
Mechanics, volume 95, 1969, pp. 247-253.
[2] A. D. Kerr, “The continuously supported rail subjected to an axial force and a
moving load,” International Journal of Mechanical Sciences, volume 14, 1972,
pp. 71-78.
[3] A. D. Kerr, “The stress and stability analysis of railroad tracks,” Journal of
Applied Mechanics, volume 41, 1974, pp. 841-848.
[4] A. M. Trochanics, R. Chelliah and J. Bielak, “United approach for beams on
elastic foundations under moving loads,” Journal of the Geotechnical Engineering
Division, ASCE, volume 113(8), 1987, pp. 879-895.
[5] A. Rytter, Vibration based inspection of civil engineering structures, PH. D.
Dissertation, Dept. of Building Technology and Structural Eng., Aalborg
University, Denmark, 1993.
[6] B. F. Feeny and R. Kappagantu, “On the physical interpretation of proper
orthogonal modes in vibrations,” Journal of Sound and Vibration, volume
221(4), 1998, pp. 607-616.
[7] B. Geoff, “Verification of structural health monitoring technique on a cable-stayed
bridge,” Final Report, NSF REU Program in Structural Engineering, Structural
Control and Earthquake Engineering Laboratory, Washington University in St.
Louis, 2001.
[8] C. J. Lu and Y. T. Hsu, “Vibration analysis of an inhomogeneous string for
damage detection by wavelet transform,” International Journal of Mechanical
Sciences, volume 44, 2002, pp. 745-754.
[9] D. Lyon, “The calculation of track forces due to dipped rail joints, wheel flats and
rail welds,” 2nd ORE Colloquium on Technical Computer Programs, 1972.
[10] D. G. Duffy, “The response of an infinite railroad track to a moving vibrating
mass,” Journal of Applied Mechanics, volume 57, 1990, pp. 66-73.
[11] F. T. K. Au, J. J. Wang and Y. K. Cheung, “Impact study of cable-stayed bridge
under railway traffic using various models,” Joural of Sound and Vibration,
volume 240(3), 2001, pp. 447-465.
[12] F. T. K. Au, Y. S. Cheng and Y. K. Cheung, “On the determination of natural
frequenceies and mode shapes of cable-stayed bridges,” Applied Mathematical
Modelling, volume 25, 2001, pp. 1099-1115.
[13] H. C. Meacham and D. R. Ahlbeck, “Computer study of dynamic loads caused by Vehicle-track interactions,” Journal of Engineering for Industry, volume 91,
ASME, 1969, pp. 808-816.
[14] H. H. Jenkins, J. E. Stephenson, G. A. Clayton, G. W. Morland and D. Lyon,
“The effect of track and vehicle parameters on wheel/rail vertical dynamic
forces,” Railway Engineering Journal, volume 3(1), 1974, pp. 2-16.
[15] H.G. Natke and C. Cempel, “Model-aided diagnosis based on symptoms”,
Structural Damage Assessment Using Advanced Signal Processing Procedures,
Proceedings of DAMAS’97, University of Sheffield, UK, 1997, pp. 363-375.
[16] H. T. Vincent, S.-L. J. Hu and Z. Hou, “Damage detection using empirical mode
decomposition method and wavelet analysis,” Proc., 2nd Int. Workshop on
Structural Health Monitoring, F.-K. Chang, ed., Stanford University Press,
Stanford, Calif, 1999, pp. 891-900.
[17] J. T. Kenney, “Steady-state vibrations of beam on elastic foundation for moving
load,” Journal of Applied Mechanics, volume 76, 1954, pp. 359-364.
[18] J. D. Achenbach and C. T. Sun, “Moving load on a flexible supported
Timoshenko beam,” International Journal of Solids and Structures, volume 1,
1965, pp. 353-370.
[19] J. J. Knothe, Interaction of railway vehicles with the track and its substructure,
Vehicle System Dynamics, Swets & Zeitlinger, Lisse, 1995.
[20] J. J. Kaller, “Discretely supported rails subjected to transient loads,” Vehicle
System Dynamics, volume 25, 1996, pp. 71-88.
[21] J. Zhao, J. N. Ivan and J. T. DeWolf, “Structural damage detection using artificial
neural networks,” Journal of Infrastructure Systems, volume 4(3), 1998, pp.
93-101.
[22] J. Zhao and J. T. DeWolf, “Sensitivity study for vibrational vehicle and
parameters used in damage detection,” Journal of structural engineerung, volume
125(4), 1999, pp. 410-416.
[23] J. Maeck and G. De Roeck, “Damage detection on a prestressed concrete bridge
and RC beams using dynamic system identification”, Damage Assessment of
Structures, Proceedings of the International Conference on Damage Assessment of
Structures (DAMAS 99), Dublin, Ireland, 1999, pp.320-327.
[24] J. M. Ko, Z. G. Sun and Y. Q. Ni, “Multi-stage identification scheme for detecting
damage in cable-stayed Kap Shui Mun Bridge,” Engineering Structures, volume
24, 2002, pp. 857-868.
[25] K. Ono and M. Yamada, “Analysis of railway track vibration,” Journal of Sound
and Vibration, volume 130(2), 1989, pp. 269-297.
[26] K. C. Chang, Z. Shen and G. C. Lee, “Modal analysis technique for bridge
damage detection,” Structural engineering in natural hazards mitigation, ASCE ,Reston, Va., 1993, pp. 1083-1088.
[27] L. Fryba, Vibrations of solids and structures under moving loads, Groningen,
Netherlands, 1972.
[28] L. Sirovich, B. W. Knight and J. D. Rodriguez, “Optimal low-dimensional
dynamic approximation,” Quarterly of Applied Mathematics, XLVIII, 1990, pp.
535-548.
[29] L. Tang, Investigations on the dynamics of planels subjected to supersonic flow,
Ma. D. thesis, McGill University, 2002, pp. 23-30.
[30] Li Zhao Ling, Aiqun, Miao Changqing and Wang Yonglan “Damage Detection for
Long-Span Cable-Stayed Bridge”, Journal of Southwest Jiaotong University,
volume 1, 2006.
[31] M. Hetenyi, Beams on elastic foundation, Ann Arbor, Michigan, 1946.
[32] M. Rajaee, S. K. F. Karlsson and L. Sirovich, “Low-dimensional description of
free-shear-flow coherent structures and their dynamical behavior,” Journal of
Fluid Mechanics, volume 258, 1994, pp. 1-29.
[33] N. R. Hewson, Prestressed Concrete Bridges: Design and Construction, Thomas
Telford, London, 2003.
[34] P. Lou, G.-L. Dai and Q.-Y. Zeng, “Finite-element analysis for a Timoshenko
beam subjected to a moving mass,” Journal of Mechanical Engineering Science,
volume 220(5), 1995, pp. 669-678.
[35] P. Holmes, J. L. Lumley and G. Berkooz, Coherent Structures, Dynamical
Systems and Symmetry, Cambridge Monogr. Mech, Cambridge University Press,
1996.
[36] P. Galvin and J. Dominguez, “Dynamic analysis of a cable-stayed deck steel arch
bridge,” Journal of Constructional Steel Research, volume 63(8), 2007, pp.
1024-1035.
[37] Q. Zhang and Q. Li, , “Statistical damage assessment method of cable-stayed
bridge,” Journal of Southeast University(Natural Science Edition), volume 35,
2005 pp. 80-83.
[38] Q. Zhang and Q. Li, “Composite sensitivity index method for damage location
identification of cable-stayed bridge,” Journal of Vibration and Shock, volume
25(3), 2006, pp. 138-141.
[39] R. D. Adams, D. Walton, J. E. Flitcroft and D. Short, “Vibration testing as a
non-destructive test tool for composite materials,” Composite Reliability,
ASTM,volume 580, 1975, pp. 159-175.
[40] R. D. Adams, P. Cawley, C. J. Pye and B. J. Stone, “Vibration techniques for
non-destructively assessing the integrity of structures,” Journal of Mechanical
Engineering Science, volume 20(2), 1978, pp. 93-100.
[41] R. D. Frohling, H. Scheffel and W. Ebersohn, “The vertical dynamic response of
a rail vehicle caused by track stiffness variations along the track,” Vehicle System
Dynamics, Supplement, volume 25, 1996, pp. 175-187.
[42] S. Timoshenko and F. B. Langer, “Stresses in railroad track,” Journal of Applied
Mechanics, volume 54, 1932, pp. 277-302.
[43] S. Alampalli, G. Fu and E. Dillon, “Signal versus noise in damage detection by
experimental modal analysis,” Journal of Structural Engineering, volume 123(2),
1997, pp. 237-245.
[44] S. Gouttebroze and J. Lardies, “On using the wavelet transform in modal
analysis,” Mechanics Research Communications, volume 28(5), 2001, pp.
561-569.
[45] T. Y. P. Chang, C. C. Chang and Y. G. Xu, “Updating structural parameters: An
adaptive neural network approach,” Proc., 2nd Int. Workshop on Structural Health
Monitoring, F.-K. Chang, ed., Stanford University Press, Stanford, Calif, 1999,
pp. 379-389.
[46] W. Zhai and Z. Cai, “Dynamic interaction between a lumped mass vehicle and a
discretely supported continuous rail track,” Computers and Structures, volume
63(5), 1997, pp. 879-895.
[47] W. X. Ren, X. L. Peng and Y. Q. Lin, “Experimental and analytical studied on
dynamic characteristics of a large span cable-stayed bridge,” Engineering
Structures, volume 27, 2005, pp. 535-548.
[48] X. Lei, and N.-A. Noda, “Analysis of dynamic response of vehicle and track
coupling system with random irregularity of track vertical profile,” Journal of
Sound and Vibration, volume 258(1), 2002, pp. 147-165.
[49] Y. Q. Ni, H. F. Zhou, K. C. Chan and J. M. Ko, “Modal flexibility analysis of
cable-stayed Ting Kau bridge for damage identification,” Computer-Aided Civil
and Infrastructure Engineering, volume 23(3), 1996, pp. 223-236.
[50] Y.-B. Yang and J.-D. Yau, “Vehicle-bridge interaction element for dynamic
analysis,” Journal of structural engineerung, volume 123, 1997, pp. 1512-1518.
[51] Y. Q. Sun and M. Dhanasekar, “A dynamic model for the vertical interaction of
the rail track and wagon system,” International Journal of Solids and Structures,
volume 39, 2002, pp. 1337-1359.
[52] Y.-B. Yang and J.-D. Yau, “Vibration Reduction for Cable-Stayed Bridges
Traveled by High-Speed Trains,” Finite Elements in Analysis and Design, volume
40, 2004, pp. 341-359.
[53] Y. L. Xu, , and Q. S. Ding, “Interaction of railway vehicles with track in
cross-winds,” Journal of Fluids and Structures, volume 22, 2006, pp. 295-314.
[54] Z. Hou and M. Noori, “Application of wavelet analysis for structural health monitoring,” Proc., 2nd Int. Workshop on Structural Health Monitoring, F.-K.
Chang, ed., Stanford University Press, Stanford, Calif, 1999, pp. 946-995.
[55] Z. G. Sun, Y. Q. Ni, J. K. Ko and H. J. Ding, “Damage locating of cable-stayed
bridges based on dynamic measurement and neural network technique,”
Gongcheng Lixue/Engineering Mechanics, volume 20(3), 2003, pp. 26-30.
[56] 尹世洵,軌道於列車作用下之互制行為,碩士論文,國立台灣大學土木工程
研究所,台北,1997。
[57] 石鋕堂,光纖光柵感測系統在軌道監測上的應用,碩士論文,國立中央大學
土木工程研究所,桃園,2004。
[58] 朱思戎,列車與道碴及版式軌道之動力互制行為,碩士論文,國立台灣大學
土木工程研究所,台北,2001。
[59] 李鎮宇,高速鐵路高架橋與列車共振問題之分析研究,碩士論文,國立台灣
大學土木工程研究所,台北,1994。
[60] 狄彥君,道碴軌道基礎之力學特性試驗及研究,碩士論文,國立台灣大學土
木工程研究所,台北,1997。
[61] 李有豐,林安彥,橋梁檢測與補強,全華科技圖書股份有限公司,台灣,2000。
[62] 吳演聲,常時與地震作用下之列車-鋼軌-橋梁動力互制行為,碩士論文,國
立台灣大學土木工程研究所,台北,2000。
[63] 何仲騏,高鐵有限長及無限長軌道之動力分析,碩士論文,國立台灣大學造
船及海洋工程學研究所,台北,2000。
[64] 吳崧琦,高屏溪斜張橋三維結構分析,碩士論文,中原大學土木工程學系,
桃園,2004。
[65] 林炳宏,懸浮系統車輛模式對橋梁衝擊效應之研究-子結構動態濃縮法,碩士
論文,國立台灣大學土木工程研究所,台北,1993。
[66] 林明典,斜張橋的纜索在隨機車流及路面粗糙度下的動力特性,碩士論文,
國立台灣大學土木工程研究所,台北,2007。
[67] 姚忠達,橋梁於列車作用下之動態反應-解析與數值模擬,碩士論文,國立
台灣大學土木工程研究所,台北,1996。
[68] 許琳青,橋梁於高速列車作用下之衝擊效應,碩士論文,國立台灣大學土木
工程研究所,台北,1996。
[69] 張嘉宏,剛性車-橋互制反應分析兼談水平曲梁衝擊效應,碩士論文,國立台
灣大學土木工程研究所,台北,1997。
[70] 陳貞伶,列車行駛於多跨橋之動力行為與舒適度分析,碩士論文,國立台灣
大學土木工程研究所,台北,2001。
[71] 陳宏煜,考慮連結效應之車橋穩態互制行為,碩士論文,國立台灣大學土木
工程研究所,台北,2002。
[72] 梁鹏,徐岳,刘永健,「斜拉索分析统一理论及其应用」,建筑科学与工程
学报,第二十三卷,第一期,2006,pp 68-77。
[73] 陳振華,林炳昌,「斜張橋斜拉索拉力檢測與安全評估」,技師月刊,第四十
七期,2007,pp 83-92。
[74] 黃勝翊,橋梁於高速列車下之振動效應,碩士論文,國立台灣大學土木工程
研究所,台北,1999。
[75] 溫佳敏,斜張橋的設計與振態分析,碩士論文,中原大學土木工程學系,桃
園,2003。
[76] 楊永斌,姚忠達,高速鐵路車-橋互制理論,圖文技術服務有限公司,台灣,
2000。
[77] 翟婉明,車輛-軌道耦合動力學,中國鐵道出版社,北京,2002。
[78] 劉文福,等跨連續橋受列車作用之動態反應分析,碩士論文,國立台灣大學
土木工程研究所,台北,2000。
[79] 鄭文龍,高屏溪橋,交通部台灣區國道新建工程,台北市,2001。
[80] 潘濬瑋,以ABAQUS 分析道碴軌道與車輛交互作用下之動態反應,碩士論
文,國立成功大學土木工程學系,台南,2004。
[81] 蔡浚廷,車橋互制行為之模型實驗及分析,碩士論文,國立中央大學土木工
程研究所,桃園,2005。
[82] 蕭吉謹,斜張橋於列車作用下之動力反應分析,博士論文,國立台灣大學土
木工程研究所,台北,2002。
論文全文使用權限:同意授權於2009-07-28起公開