現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:壓電智慧梁之系統識別與感應 [以論文名稱查詢館藏系統]
論文英文名稱:System Identification and Sensing of A Piezo-smart Beam [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:97
出版年度:98
中文姓名:施博瀚
英文姓名:Po-Han Shih
研究生學號:96428023
學位類別:碩士
語文別:中文
口試日期:2009-07-02
論文頁數:80
指導教授中文名:尹世洵
口試委員中文名:張順益;洪曉慧
中文關鍵詞:壓電型智慧材料直接系統參數識別法無因次分析xPC target
英文關鍵詞:Piezo-smart materialDSPIDimensionless analysisxPC target
論文中文摘要:本文是利用時間域識別法中的直接系統參數識別法(Direct system parameter identification,DSPI)進行系統識別,首先以數值模擬的方式,分別在不同形式的外力作用下產生輸入與輸出歷時反應進行系統識別,利用無因次分析(Dimensionless analysis)找出識別時所需的取樣時間間隔,之後以有限元素法(Finite element method)模擬兩端固定支承梁結構系統,並產生輸入與輸出歷時反應進行系統識別時,發現在梁的兩側施加對稱形式的彎矩外力,只會識別出奇數模態,在梁的兩側施加反對稱形式的彎矩外力,只會識別出偶數模態。之後將直接系統參數識別法應用於實驗分析,本實驗是以壓電型智慧材料(Piezo-smart material)作為致動器(Actuator)產生振動訊號,再以位移計量測到的反應進行系統識別,首先對兩端固定支承梁結構系統識別自然頻率及阻尼比,之後將壓電智慧梁與系統識別應用於感測系統上,利用識別出的自然頻率來感測出懸臂梁上增加的質量與懸臂梁沒入水中的深度。
論文英文摘要:This study uses the direct system parameter identification (DSPI) method to identify the system parameter (e.g. natural frequencies, damping ratio and mode shapes) in time domain. The DSPI method are applied to numerical simulation and experimental analysis.
In numerical simulation, first we simulate a single degree-of-freedom system subject to different types of external force (input) and obtain the time series of the displacement of the structure (output). Then, we find the optimal sampling interval in the process of identification which can accurately identify system parameters. Next, we simulate a two-fixed-end beam by a finite element method. We find that the system parameters of odd modes can be identified when symmetric moments are exerted on both ends of the beam. On the contrary, the system parameters of even modes can be detected when anti-symmetric moments are applied.
In experimental analysis, we fabricate a two-fixed-end beam and a cantilever beam with two piezoelectric patches bounded onto both surfaces of the beam near the damped location. These beams can be excited to vibration by applying the voltage to the piezoelectric patches to generate moments. The non-contact displacement sensor is used to measure the dynamic response of the beam. Based on the measurement data, the system parameters of the beams are identified by the DSPI method.
Finally, the self-excited piezo-smart beam combined with the DSPI method is applied in a sensing system. The changes in the natural frequencies are identified to sense a mass added to the cantilever and to detect the immersed depth of the beam in water.
論文目次:中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 ix
第一章 緒論 1
1.1 引言 1
1.2 文獻回顧 2
1.2.1 壓電材料 2
1.2.2 時間域之系統識別 3
1.2.3 壓電感測器 3
1.3 研究動機與目的 4
1.4 研究大綱 5
第二章 直接系統參數識別法之理論推導 6
2.1 直接系統參數識別法 6
2.2 單自由度之數學驗證 9
第三章 數值模擬與分析 12
3.1 單自由度分析 12
3.1.1 自由振動 13
3.1.2 諧和振動 15
3.2 多自由度分析 17
3.2.1 兩個自由度系統 18
3.2.2 兩端固定支承梁模型結構系統 21
第四章 實驗分析與感測應用 44
4.1 軟體介紹 44
4.1.1 Simulink 44
4.1.2 xPC target 45
4.2 硬體介紹 45
4.2.1 PZT 45
4.2.2 資料擷取裝置 45
4.2.3 感應式位移計 46
4.3 實驗流程 46
4.4 兩端固定支承梁結構系統 47
4.4.1 掃頻式諧和外力 48
4.4.2 直接系統參數識別法分析 50
4.5 感測應用 51
4.5.1 質量感測 51
4.5.2 水深感測 53
第五章 結論與建議 76
5.1 結論 76
5.2 建議與展望 77
參考文獻 78
論文參考文獻:[1] B. H. Kim, M. Maute, F. E. Prins, D. P. Kern, M. Croitoru, S. Raible, U. Weimar and W. Gopel, “Parallel frequency readout of an array of mass-sensitive transducers for sensor applications,” Microelectronic Engineering, vol. 53, no. 1, 2000, pp. 229-232.
[2] C. F. Hung and W. J. Ko, “Identification of modal parameters from measured output data using vector backward autoregressive model,” Journal of Sound and Vibration, vol. 256, no. 2, 2001, pp. 249-270.
[3] D. G. Crighton, “Resonant oscillations of fluid-loaded struts,” Journal of Sound and Vibration, vol. 87, no. 3, 1983, pp. 429-437.
[4] D. L. Brown, R. J. Allemang, R. Zimmerman, and M. Mergeay, “Parameter estimation techniques for modal analysis,” SAE Paper, Number 790221, 1979.
[5] F. Lembregts, J. H. Leuridan and H. Ven Brussel, “Frequency domain direct parameter identification for modal analysis: state space formulation,” Mechanical Systems and Signal Processing, vol. 4, no. 1, 1990, pp. 65-75.
[6] G. U. Yule, “On a method of investigating periodicities in disturbed series, with special reference to wolfer’s sunspot numbers,” Philosophical Transactions of the Royal Society A, London, vol. 226, 1927, pp. 267-298.
[7] G. Walker, “On periodicity in series of related terms,” Proceedings of the Royal Society A, London, vol. 131, 1931, pp. 518-532.
[8] H. Vold and G. T. Rocklin, “Numerical implementation of a multi-input modal estimation method for mini-computers,” Proceedings of the International Modal Analysis Conference & Exhibit, 1982, pp. 542-548.
[9] H. Vold, J. Kundrat, G. T. Rocklin and R. Russell, “Multi-input modal estimation algorithm for mini-computers,” SAE Preprints, 1982.

[10] J. M. Leuridan, Some direct parameter model identification methods applicable for multiple input modal analysis, Ph.D. thesis, University of Cincinnati, U. S., 1984.
[11] J. N. Juang and R. S. Pappa, “An eigensystem realization algorithm for modal parameter identification and modal reduction,” Journal of Guidance and Control Dynamics, AIAA, vol. 8, no. 5, 1985, pp. 620-627.
[12] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series,” Mathematics of Computation, vol. 19, 1965, pp. 297-301.
[13] J. Zhou, P. Li, S. Zhang, Y. Huang, P. Yang, M. Bao and G. Ruan, “Self-excited piezoelectric microcantilever for gas detection,” Microelectronic Engineering, vol. 69, no. 1, 2003, pp. 37-46.
[14] M. Maute, S. Raible, F. E. Prins, D. P. Kern, U. Weimar and W. Gopel, “Fabrication and application of polymer coated cantilevers as gas sensors,” Microelectronic Engineering, vol. 46, no. 1, 1999, pp. 439-442.
[15] N. M. M. Maia and J. M. M. Silva, Theoretical and experimental modal analysis, New York: John Wiley & Sons Inc., 1997.
[16] P. Andersen, Identification of civil engineering structures using vector ARMA models, Ph.D. thesis, Aalborg University, Denmark, 1997.
[17] S. Guan, “Frequency encoding of resonant mass sensors for chemical vapor detection,” Analytical Chemistry, vol. 75, no. 17, 2003, pp. 4551-4557.
[18] S. Hosaka, T. Chiyoma, A. Ikeuchi, H. Okano, H. Sone and T. Izumi, “Possibility of a femtogram mass biosensor using a self-sensing cantilever,” Current Applied Physics, vol. 6, no. 3, 2006, pp. 384-388.
[19] S. R. Ibrahim and E. C. Mikulcik, “A method for the direct identification of vibration parameters from the free response,” The Shock and Vibration Bulletin, vol. 47, no. 4, 1977, pp. 183-198.
[20] Y. Fu and W. G. Price, “Interactions between a partially or totally immersed vibrating cantilever plate and the surrounding fluid,” Journal of Sound and Vibration, vol. 118, no. 3, 1987, pp. 495-513.

[21] 巫鷹駿,藉由增加系統非線性動力行為之偵測與感應,碩士論文,國立台北科技大學土木與防災研究所,台北,2009。
[22] 楊大智、吳錫侃、游正鋒,智能材料與智能系統,台灣:新文京開發出版股份有限公司,2004。
論文全文使用權限:同意授權於2009-07-28起公開