現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:考慮梁柱接頭剪力破壞之鋼筋混凝土構架側推分析 [以論文名稱查詢館藏系統]
論文英文名稱:A Study on Pushover Analysis of Reinforced Concrete Frame with Shear Failure at Beam-Column Joints [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:97
出版年度:98
中文姓名:蕭嘉慶
英文姓名:Chia-Ching Hsiao
研究生學號:96428002
學位類別:碩士
語文別:中文
口試日期:2009-06-24
論文頁數:140
指導教授中文名:宋裕祺
指導教授英文名:Yu-Chi Sung
口試委員中文名:蔡益超;黃世建
口試委員英文名:I-ChauTsai;Shyh-Jiann Hwang
中文關鍵詞:容量曲線塑性鉸遲滯迴圈
英文關鍵詞:Capacity curvePlastic hingeHesterestic loop
論文中文摘要:目前有關鋼筋混凝土建築物耐震設計或耐震能力之評估多係針對柱、梁與牆等主要構材塑性鉸特性之設定,藉由靜態側推分析(Static Pushover Analysis)或動態歷時分析(Dynamic Time History Analysis)所得成果加以判斷,惟對於梁柱接頭因強度不足而產生剪力破壞的研究則相對缺乏。為展現構件真實受力行為,本文針對鋼筋混凝土構架提出一套可考量梁柱接頭剪力破壞之非線性側推分析流程,其中柱、梁等主要構材塑性鉸之特性係採用宋裕祺等人先前之研究成果加以設定,並以拉壓桿等值斜撐模式來模擬梁柱接頭,斜撐塑性鉸的參數設定則係參考FEMA273、FEMA356與ASCE41等規範之相關規定。本文利用SAP2000與MIDAS GEN進行四座鋼筋混凝土構架結構的非線性側推分析,分析結果與試體反覆載重試驗之容量曲線(Capacity Curve)及破壞機制(Failure Mechanism)順序進行驗證比對,結果顯示本文所研提的方法可不失準確地模擬鋼筋混凝土構架梁柱接頭的破壞行為。
論文英文摘要:In the past decade, the study on seismic behavior of reinforced concrete (RC) frame-structure was concentrated on the setting of plastic hinge (PH), i.e. structural nonlinearity, for the main structural members such as column, beam and wall as the necessary inputs of either pushover analysis or time history analysis. However, it can not include the fact of shear failure at the beam-column joint that was ever observed from the seismic damage in recent earthquakes. To study this failure effect, this thesis proposed a simplified structural model with two cross nonlinear struts acting in the diagonal of each beam-column joint and then set up the PH characteristic of the struts, based on the specifications of FEMA 273、FEMA 356 and ASCE-41, in the sofeware of the SAP2000 and the MIDAS GEN. Associated with Sung’s previous study on the PH setting of the main structural members, the pushover analysis can be performed accordingly. For experimental results of rigid-frame structure with shear failure at the beam-column joint were served as the data base for the investigation of the proposed method. It shows that the proposed procedure can give a reasonable analytical result and an insight into the progressive failure sequence of the concerned structure.
論文目次:目錄
摘 要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究方法與內容 3
第二章 文獻回顧 5
2.1 前言 5
2.2 國內外梁柱接頭震害回顧 5
2.3 梁柱接頭相關試驗回顧 9
2.4 模擬梁柱接頭相關分析回顧 11
2.4.1 多彈簧與多節點分析模型 11
2.4.2 有限元素模型 15
2.4.3 簡化分析模型 17
2.4.4 軟化拉壓桿分析模型 20
2.5 各國梁柱接頭規範回顧 22
2.5.1 美國ACI 318-05有關梁柱接頭之規定 22
2.5.2 美國ACI-ASCE 352有關梁柱接頭之規定 25
2.5.3 日本AIJ有關梁柱接頭之規定 28
2.5.4 紐西蘭 NSZ 3101 有關梁柱接頭之規定 29
2.6 小結 31
第三章 鋼筋混凝土梁柱與梁柱接頭塑鉸設定及分析流程 32
3.1 前言 32
3.2 鋼筋混凝土柱之破壞模式及判別 32
3.2.1 撓曲行為之分析 33
3.2.1.1 柱斷面彎矩-曲率、軸力-彎矩關係之建立 33
3.2.2 剪力行為之分析 35
3.2.2.1 柱構材剪力強度-韌性比之關係之建立 35
3.2.2.2 柱剪力強度-轉角與彎矩-轉角之轉換 37
3.2.3 鋼筋混凝土柱破壞模式之判別 38
3.3 鋼筋混凝土柱塑性鉸之設定 39
3.3.1 SAP2000 M3 塑性鉸之設定 39
3.3.2 鋼筋混凝土柱塑性鉸之設定 40
3.4 鋼筋混凝土構架之梁、柱塑鉸之設定 42
3.5 梁柱接頭元素非線性行為之模擬 43
3.5.1 梁柱接頭的力量傳遞機制 43
3.5.2 鋼筋混凝土梁柱接頭之模擬 44
3.5.3 FEMA-273、356及ASCE-41建議之梁柱接頭塑鉸特性 46
3.6 SAP2000 與 MIDAS GEN 側推分析之構建簡介 54
3.6.1 側推分析 54
3.6.2 SAP2000 與 MIDAS GEN塑鉸性質設定之差異 55
3.6.3 SAP2000 塑鉸設定 56
3.6.4 MIDAS GEN 塑鉸設定 58
3.6.5 SAP2000與MIDAS GEN塑鉸位置之指定 60
3.6.6 SAP2000 與 MIDAS GEN 側推分析之設定 62
3.6.6.1 SAP2000 側推分析之設定 62
3.6.6.2 MIDAS GEN 側推分析之設定 66
3.6.7 SAP2000與MIDAS GEN模擬梁柱接頭之設定重點 68
3.6.8 結論 70
第四章 鋼筋混凝土單柱與構架非線性行為及遲滯迴圈路徑之案例分析與驗證 71
4.1 前言 71
4.2 使用M3塑鉸鋼筋混凝土單柱與構架容量曲線之分析與比較 71
4.2.1. 日本土木學會JSCE-4試體之分析與驗證 74
4.2.2 日本Kawashima研究團隊TP-10試體之分析與驗證 76
4.2.3 日本Kawashima研究團隊TP-12試體之分析與驗證 78
4.2.4 日本Kawashima研究團隊TP-54試體之分析與驗證 80
4.2.5 國家地震工程研究中心 BMDF 試體 82
4.3 鋼筋混凝土柱與構架遲滯迴圈路徑之分析與比較 85
4.3.1 鋼筋混凝土柱遲滯迴圈路徑之分析與比較 85
4.3.2鋼筋混凝土構架遲滯迴圈路徑之分析與比較 88
4.4 使用纖維塑性鉸之鋼筋混凝土單柱與構架容量曲線之分析與比較 91
4.4.1 使用纖維塑性鉸之鋼筋混凝土柱之分析與比較 91
4.4.2 使用纖維塑性鉸之鋼筋混凝土構架之分析與比較 95
第五章 考慮梁柱接頭破壞之鋼筋混凝土構架案例分析及探討 96
5.1 前言 96
5.2 梁、柱與梁柱接頭塑鉸特性之建立 97
5.3 考慮梁柱接頭剪力破壞之鋼筋混凝土構架案例分析與比較 98
5.3.1 國家地震工程研究中心BMDF試體之分析與比較 98
5.3.1.1 BMDF試體簡介-單層單跨 98
5.3.1.2 BMDF試體裂縫發展與最終破壞結果 98
5.3.1.3 BMDF試體分析模型建立 100
5.3.1.4 BMDF試體側推分析之容量曲線比較 101
5.3.1.5 BMDF試體側推分析塑鉸發生順序與試體破壞機制之比較 103
5.3.2 國家地震工程研究中心BMNF-F試體之分析與比較 106
5.3.2.1 BMNF-F試體簡介-單層單跨 106
5.3.2.2 BMNF-F試體裂縫發展與最終破壞結果 107
5.3.2.3 BMNF-F試體分析模型建立 109
5.3.2.4 BMNF-F試體側推分析之容量曲線比較 110
5.3.2.5 BMNF-F試體側推分析塑鉸發生順序與試體破壞機制之比較 112
5.3.3 國家地震工程研究中心NF試體之分析與比較 115
5.3.3.1 NF試體簡介-雙層雙跨 115
5.3.3.2 NF試體裂縫發展與最終破壞結果 116
5.3.3.3 NF試體分析模型建立 118
5.3.3.4 NF試體側推分析之容量曲線比較 119
5.3.3.5 NF試體側推分析塑鉸發生順序與試體破壞機制之比較 121
5.3.4 國家地震工程研究中心TF試體之分析與比較 124
5.3.4.1 TF試體簡介-三層三跨 124
5.3.4.2 TF試體裂縫發展與最終破壞結果 125
5.3.4.3 TF試體分析模型建立 127
5.3.4.4 TF試體側推分析之容量曲線比較 128
5.3.4.5 TF試體側推分析塑鉸發生順序與試體破壞機制之比較 130
5.4 討論 133
第六章 結論與建議 134
6.1 結論 134
6.2建議 135
參考文獻 136
論文參考文獻:[1] ACI Committee 318, Building code requirements for structural concrete and commentar ACI 318-05/ ACI 318R-05, Farmington Hills, Michigan, U.S.A.:American Concrete Institute, 2005.
[2] ACI-ASCE Committee 352, Recommendations for Design of Beam-Column Joints in Monolithic Reinforced Concrete Structures, ACI 352R-91, Farmington Hills, Michigan,U.S.A.:American Concrete Institute, 1997.
[3] ACI-ASCE Committee 352, Recommendations for Design of Beam-Column Connections in Monolithic Reinforced Concrete Structures, ACI 352R-02, Farmington Hills, Michigan,U.S.A.:American Concrete Institute, 2002.
[4] American Society of Civil Engineers, Seismic Rehabilitation and Evaluation of Existing Buildings, ASCE-41-06, American Society of Civil Engineers, 2007.
[5] Computer and Structures, Inc., SAP2000:Integrated Finite Element Analysis and Design of Structures, Analysis Reference:Volume 1 & 2, Version 9.0, Berkeley, California, U.S.A.:Computer and Structures, Inc., 2004.
[6] Computer and Structures, Inc., SAP2000:Integrated Finite Element Analysis and Design of Structures, Detailed Tutorial Including Pushover Analysis, Version 9.0, Berkeley, California, U.S.A.:Computer and Structures, Inc., 2004.
[7] E. Hertanto, Seismic Assessment of Pre-1970s Reinforced Concrete Structure, Master’s.Degree. Thesis, University of Canterbury, Christchurch, 2005.
[8] Federal Emergency Management Agency, NEHRP Guidelines for the Seismic Rehabilitation of Buildings, FEMA-273, Washington D.C.:Building Seismic Safety Council, 1997.
[9] Federal Emergency Management Agency, Prestandard and Commentary for the Seismic Rehabilitation of Buildings, FEMA-356, Washington D.C.:Building Seismic Safety Council, 2000.
[10] F. Kusuhara, K. Azukawa, H. Shiohara and S Otani, "Tests of Reinforced Concrete Interior Beam-Column Joint Subassemblage with Eccentric Beams," 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, 2004, Paper no. 185.
[11] Federal Emergency Management Agency, Proceedings of FEMA-Sponsored Workshop on Communicating Earthquake Risk, ATC-58, Chicago, Illinois:Applied Technology Council, 2002.
[12] G.M. Calvi, G. Magenes, S. Pampanin, "Experimental Test on a Three Storey R.C. Frame Designed for Gravity Only," 12th European Conference on Earthquake Engineering, London, 2002, Paper No. 727.
[13] H. Sezen, and F. Alemdar,"Evaluation of FEMA-356 Models for Reinforced Concrete Columns and Beam-Column Joints," Journal of the Structural Division, ASCE, 2007.
[14] H. Takemura, and K. Kawashima, "Effect of Loading Hysteresis on Ductility Capacity of Reinforced Concrete Bridge Piers," Journal of Structural Engineering, 1997, Vol. 43A, pp.849-858, Japan
[15] Japan Society of Civil Engineers, Cyclic loading test data of reinforced concrete Bridge Piers, Ductility Design Subcommittee, Earthquake Engineering Committee, 2001, Tokyo.
[16] Kawashima Research Group, http://seismic.cv.titech.ac.jp/en/, Research Group, Cyclic Loading Test Data of Reinforced Concrete Bridge Piers, Japen.
[17] L. Lowes, N. Mitra and A. Altoontash, "A Beam-Column Joint Model for Simulating the Earthquake Response of Reinforced Concrete Frames," Pacific Earthquake Engineering Research Center, University of California, Berkeley, 2003.
[18] Meinheit, D.F. and J.O. Jirsa, "Shear Strength of RC Beam-column Connections," Journal of Structural Engineering, Vol. 107, No. ST11, 1981, pp. 2227-2244.
[19] M. Elmorsi, M. R. Kianoush and W. K. Tso, "Modeling bond-slip deformations in reinforced concrete beam-column joints," Journal of Civil Engineering, vol. 27, 2000, pp.490-505.
[20] M. Youssef, A. Ghobarah, "Modeling of RC Beam-Column Joints and Structural Wall," Journal of Eaahquake Engineefing, vol. 5, no. 1, 2001, pp. 93-111.
[21] MIDAS Information Technology Co.,Ltd., MIDAS GEN:Integrated Design and Analysis Software, Version 7.1.6, K.R.:POSCO., 2008.
[22] N.W. Hanson, and H.W. Conner, "Seismic Resistance of Reinforced Concrete Beam-Column Joints," Journal of Structural Engineering, vol. 93, no. ST5, 1967, pp. 553-560.
[23] N. Mitra and L. Lowes, "Evaluation and Advancement of a Reinforced Concrete Beam-Column Joint," 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, 2004, Paper no. 1001.
[24] N. Mitra and L. Lowes, "Evaluation, Calibration, and Verification of a Reinforced Concrete Beam–Column Joint Model," ASCE Journal of Structural Engineering, 2007.
[25] New Zealand Standard NZS 3101, Concrete Structures Standard Part1-the Design of Concrete Structures, New Zealand:Standards Association of New Zealand, Wellington, 2006.
[26] New Zealand Standard NZS 3101, Concrete Structures Standard Part2-Commentary on The Design of Concrete Structures, New Zealand:Standards Association of New Zealand, Wellington, 2006.
[27] R. Murty, Learning Earthquake Design and Construction 20. How Do Beam-Column Joints in RC Buildings Resist Earthquakes, India, Springer India, 2005, pp.82-85.
[28] R. Eligehausen, J. Ožbolt, G. Genesio, M. S. Hoehler and S. Pampanin, "Three-dimensional Modelling of Poorly Detailed RC Frame Joints," New Zealand Society of Earthquake Engineering NZSEE, 2006.
[29] S. Pampanin, G. M. Calvi, and M. Moratti, "Seismic Behaviour of R.C. Beam-Column Joints Designed for Gravity Loads," 12th European Conference on Earthquake Engineering, London, 2002, Paper no. 726.
[30] S. Pampanin, G. M. Calvi, and M. Moratti, "Seismic Response of Beam-Column Joints Designed for Gravity Loads," ASCE Journal of Structural Engineering, 2001.
[31] S. Tajiri, H. Shiohara, and F. Kusuhara, "A New Macro Element of Reinforced Concrete Beam-Column Joint for Elasto-Plastic Plane Frame Analysis," Proceedings of the 8th U.S. National Conference on Earthquake Engineering, San Francisco, California, USA, 2006, Paper No. 674
[32] S. Pampanin, G. Magenes and A. Carr, "Modelling of Shear Hinge Mechanism in Poorly Detailed RC Beam-Column Joints," Proceedings of the FIB Symposium Concrete Structures in Seismic Regions, Federation International du Beton, Athens, 2003, Paper no. 171
[33] S. Otani, "The Architectural Institute of Japan (AIJ) Proposal of Ultimate Strength Design Requirements for RC Buildings with Emphasis on Beam-Column Joints," Special Publication, 1991, pp. 125-144.
[34] S. Pampanin, G. Magenes, and G. M. Calvi, "Seismic Response of Reinforced Concrete Buildings Designed For Gravity Loads. Part II: Experimental Test on a Three Storey Frame," ASCE Journal of Structural Engineering, 2003b
[35] S. Pampanin, D. Bolognini and A. Pavese, "Performance-Based Seismic Retrofit Strategy for Existing Reinforced Concrete Frame Systems Using Fiber-Reinforced Polymer Composites,"Journal of Composites for Construction, Athens, 2007.
[36] T. H. Chen, Seismic Retrofit Strategy of Non-seismically Designed Frame Systems Based on a Metallic Haunch System, Master’s.Degree. Thesis, University of Canterbury, Christchurch, 2006.
[37] 土木工程技術期刊,震災與撫傷地震叢書IV,台灣:中華民國土木技師工會全國聯合會,2000。
[38] 北京金土木軟體技術有限公司/中國建築標準設計研究院,SAP2000中文版使用指南,中國大陸:人民交通出版社,2006。
[39] 吳正利,考慮梁柱接頭剪力破壞之建築物耐震能力評估,碩士論文,國立台灣大學土木工程研究所,台北,2007。
[40] 李宏仁,鋼筋混凝土耐震梁柱接頭剪力強度之研究,博士論文,國立台灣科技大學營建工程研究所,台北,2000。
[41] 李宏仁、黃世建,「鋼筋混凝土結構不連續區域之剪力強度-軟化拉壓桿模型簡算法之實例應用」,結構工程,第十七卷,第四期,2002,第53-70頁。
[42] 李森枏,SAP2000結構設計實務(V8 & V9),聯邦工程顧問股份有限公司,台灣:科技圖書,2005。
[43] 宋裕祺、劉光晏、蘇進國、蔡益超、張國鎮,「鋼筋混凝土柱側推分析之研究與探 討」,建築學報,第46 期,2004,第47~65頁。
[44] 宋裕祺、蘇進國,「鋼筋混凝土構材非線性行為分析程式 (Nonlinear Analysis of Reinforced Concrete Member, NARC-2004)」,國立台北科技大學土木與防災所,台北,2004。
[45] 洪東甲,鋼筋混凝土樑柱接頭區震後補強工法實驗研究,碩士論文, 國立高雄第一科技大學營建工程研究所,高雄,2001。
[46] 柯人文,鋼筋混凝土偏心角隅梁柱接頭反覆載重試驗之研究,碩士論文,國立雲林科技大學營建工程研究所,台北,2005。
[47] 高啟洲,非韌性鋼筋混凝土梁柱內接頭補強之研究,碩士論文,國立中央大學土木工程研究所,桃園,2002。
[48] 張敏政,「土耳其依茲米特地震震害考察」,中國地震局工程力學研究所,2000。
[49] 張來儀,「日本建築學會(AIJ)對鋼筋混凝土建築物基於極限強度的以梁柱節點為重點的設計要求的建議」,建築結構學報,第十六卷,第四期,1998,第53-70頁。
[50] 陳正誠,「箍筋配置與偏心對於鋼筋混凝土梁柱接頭行為之影響」,土木技術,第七期,1998,第111-118頁。
[51] 陳璽、武建華,「鋼筋混凝土框架節點的力傳遞機理分析」,四川建築科學研究,第三十二卷,第二期,2006。
[52] 焦心亮,「鋼筋混凝土框架頂層中節點的非線性有限元分析」,建築結構學報,第十六卷,第五期,1995。
[53] 黃世建、陳力平、陳俊宏「含開口RC牆非韌性構架之耐震行為研究」,國家地震工程研究中心,報告編號:NCREE-03-010,2003。
[54] 黃昭勳、蔡驥鑫「含牆 RC 構架之耐震分析及設計研究」,國家地震工程研究中心,報告編號:NCREE-03-031,2003。
[55] 黃金順,雙層兩跨鋼筋混凝土抗彎構架耐震測試,碩士論文,國立中央大學土木工程研究所,桃園,2003。
[56] 黃盈勝,非韌性鋼筋混凝土構架評估與補強之探討,碩士論文,國立中央大學土木工程研究所,桃園,2004。
[57] 楊政達,非韌性鋼筋混凝土梁柱外接頭補強之研究,碩士論文,國立中央大學土木工程研究所,桃園,2002。
[58] 鄧孝祥、王依群、康谷貽,「考慮節點變形的RC框架梁單元模型」,天津理工大學學報,第二十三卷,第三期,2007,第18-34頁。
[59] 蔡驥鑫,含磚牆非韌性RC構架之耐震行為分析,碩士論文,國立台北科技大學土木與防災研究所,台北,2002。
[60] 蔡克銓、黃世建「非韌性RC含牆構架之耐震評估與補強講習會」,國家地震工程研究中心,報告編號:NCREE-04-026,2004。
[61] 謝侑霖,考慮梁柱接頭剪力破壞之建築物耐震能力分析,碩士論文,國立台灣大學土木工程研究所,台北,2006。
[62] 蘇進國,以結構性能為基準之房屋建築耐震能力評估,碩士論文,國立台北科技大學土木與防災研究所,台北,2004。
[63] 蘇進國,模糊遺傳演算法在橋樑耐震性能設計之應用與耐震維修補強生命週期成本最小化之研究,博士論文,國立台北科技大學土木與防災研究所,台北,2008。
論文全文使用權限:不同意授權