現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:高效率流量量測法之可靠度分析 [以論文名稱查詢館藏系統]
論文英文名稱:Reliability Analysis on the Efficient Method of Discharge Measurement [以論文名稱查詢館藏系統]
英文姓名:Kuang-Ting Kuo
英文關鍵詞:the efficient method of discharge measurementuncertaintyreliability anlysismonte carlo simulationconfidence interval
論文英文摘要:The basic data of discharge collection is necessary and important for the management and planning of water resources, especially for middle-flow or high-flow heavy rains caused by heavy rains. The traditional methods of discharge measurement are time-consuming and labor-intensive, it is difficult to measure discharge during the period of heavy rains, because stage of the river rise and fall rapidly, and it is more dangerous to work in the worst situation. Therefore, using the Efficient Method of Discharge Measurement to measure discharge caused by heavy rains is more efficient, and it also reduce the risk. However, measurement exist uncertainty itself, because of variety of potential natural elements and man-made factors of improper operation. The purpose of this study is to use Monte Carlo simulation to the efficient flow measurement method, velocity-area method and the rating curve method for uncertainty analysis, and use the results of uncertainty analysis to prove the feasibility and reliability of the efficient method of discharge measurement. Then compare the error of discharge between the efficient method of discharge measurement and velocity-area method to establish of the error confidence interval of the efficient method of discharge measurement and use correlation coefficient to analysis accuracy. According to the results of the uncertainty analysis, as coefficient of variation as concerned, the value of the efficient of discharge measurement is less than rating curve method and close to velocity-area method, so that we can prove the feasibility and reliability of the efficient method of discharge measurement using on measurement of middle-flow or high-flow. At summary, the 95% error confidence level of the efficient method of discharge measurement is between -18.6%〜18.9% and the 95% error confidence level of rating curve is between -30.0%〜30.5%. The correlation coefficient of the efficient method of discharge is up to 0.993.
論文目次:中文摘要 i
英文摘要 ii
致 謝 iv
目 錄 v
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 前言 1
1.2 研究目的與方法 2
1.3 論文架構簡介 2
第二章 文獻回顧 5
2.1 機率流速分佈理論相關研究 5
2.2 不確定性分析之相關研究 6
第三章 模式理論 10
3.1 機率流速分佈理論 10
3.2 斷面平均流速與最大流速 13
3.3 通水斷面積 18
3.4 不確定性分析 24
3.4.1蒙地卡羅法簡介 25
3.4.2蒙地卡羅法理論介紹 26
第四章 高效率流量量測法不確定分析 36
4.1 研究區域水文概況 36
4.2 資料說明及分析 37
4.2.1流速面積法 38
4.2.2高效率流量量測法 38
4.2.3率定曲線法 41
4.3 可變動參數資料機率分佈檢定 42
4.4 不確定分析結果 48
4.5 誤差分析 56
4.6 準確度分析 63
第五章 結論與建議 64
5.1 結論 64
5.2 建議 65
參考文獻 66
論文參考文獻:[1]Ang, A. H-S and C. A. Cornell, (1974). “Reliability Bases of Structure Safety and Design,” Journal of the Structure Division, ASCE, Vol. 100, No. 9, pp. 1755-1769.
[2]Carol Werckman, Terry Hardy, Eric Wainwright, Cameron Harris, and Barbara Gentry, (2008), “Crystal Ball User Menu,” Oracle.
[3]C. H. Yang, J. I. You, and C. P. Lin, (2002). “Delineating Lake Bottom Structure by Resistivity Image Profiling on Water Surface,” TAO, Vol. 13, No. 1, pp. 39-52.
[4]C. L. Chiu and C.A. A. Said, (1995). “Maximum and Mean Velocities and Entropy in Open-Channel Flow,” J. Hydr. Engrg., ASCE, vol. 121, no. 1, pp. 26-35.
[5]C. L. Chiu, (1988). “Entropy and 2-D velocity distribution in open channels,” Member, ASCE, pp. 738-756.
[6]Eisel, L. M, (1981). “Uncertainty: The Water Resources Decision-Making Dilemma,” Y. Y. Haimes(ed.), Risk/Benefit Analysis in Water Resources Planning and Management, Plenum Press.
[7]El-Beshry, M. Z, (2008). “Sensitivity analysis of simulated dissolved oxygen in bahr hadus drain, Egypt,” Journal of Engineering and Applied Science, Vol 55, pp. 195-208.
[8]European ISO EN Rule 748, (1997). “Measurement of liquid flow in open channels-velocity-area methods,” Reference number ISO 748:(E), International Standard, pp. 41, 42, 43, 44, 45, 46
[9]G. Di Baldassarre and A. Montanari, (2009). “Uncertainty in river discharge observations:a quantitative analysis,” Hydrology and Earth System Sciences Discussions, vol. 6, pp. 39-61.
[10]Herschy R.W, (2002). “The uncertainty in a current meter mesurment,” Flow Measurement and Instrumentation, ELSEVIER, Vol. 13, 2002, pp. 281-284.
[11]J. E. Costa, R. T. Cheng, F. P. Haeni, N. Melcher, K.R. Spicer, E. Hayes, W. Plant, K. Hayes, C. Teague and D. Barrick, (2006). “Use of Radars to Monitor Stream Discharge by Noncontact Methods,” Water Resources Research, AGU, vol. 42, pp. 1-14.
[12]Jou. D, Casas-Vazquez, and Criado-Sancho M, (2001). Thermodynamics of fluids under flow, Springer, New York.
[13]K. R. Spicer, J. E. Costa and G. Placzek, (1997). “Measuring Flood Discharge in Unstable Stream Channels Using Ground-Penetrating Radar,” Geology, GSA, vol. 25, no. 5, pp. 423-426.
[14]Kylie. M. Hyde, Holger. R. Maier and Chris. B. Colby, (2004). “Reliability-Based Approach to multicriteria Decision Analysis for water Resources,” Journal of Water Resources Planning and Management, ASCE, vol 130, pp. 429-438.
[15]Lee Gordon and R. Marsden, (2002). “The BoogieDopp:A New Instrument for Measuring in Small Rivers and Channels,” Hydraulic Measurements & Experimental Methods Conference, Estes Park. Colorado. USA., pp.1-12
[16]Melching, C. S., and Sharath Anmangandla, (1992). “Improved First-Order Uncertainty Method for Water-Quality Modeling,” Journal of Environmental Engineering, Vol. 118, No.5, pp.791-805.
[17]Pelletier, M. P, (1987). “Uncertainties in the determination of river discharge: a literature review,” Can. J. Civil Eng, vol. 41,no. 15, pp. 834-850
[18]R. T. Cheng, J. W. Gartner, R. R. Mason. Jr., J. E. Costa, W. J. Plant, K. R. Spicer, F. P. Haeni, N. B. Melcher, W. C. Keller and K. Hayes, (2004). “Evaluating a Radar-Based Non-Contact Streamflow Measurement System in the San Joaquin at Vernalis, California,” Denver, USGS, pp. 1-16.
[19]Ronald L. Iman and W. J. Conover, (1982). “A Distribution-Free approach to inducing rank correlation among input variables,” Commuications in Statistics:Simulations and Computation, vol. 11, no. 3, pp.311-334
[20]Ronald L. Iman and James M. Davenport, (1982). “Rank crrelation plots for use with correlated input variables,” Commuications in Statistics:Simulations and Computation, vol. 11, no. 3, pp.335-360
[21]Shannon, C. E, (1948). “A mathematical theory of communication,” The Bell System Technical Journal, vol. 27, pp. 623-656.
[22]Shannon, C. E. and W. Weaver, (1949). “Mathematical Theory of Communication,” University of Illinois Press, IL.
[23]Spearman, C. (1904). “General intelligence objectively determined and measured,” American Journal of Psychology, vol15, pp.201–293.
[24]Stephen, C. Hora and Jon. C. Helton, (2003). “A distribution-free test for the relationship between model input and output when using Latin Hypercube sampling,” Reliability Engineering and System Safety, ELSEVIER, vol. 79, pp. 333-339.
[25]T. Moramarco, C. Saltalippi and V. P. Singh, (2004). “Estimation of Mean Velocity in Natural Channels Based on Chiu’s Velocity Distribution Equation,” J. Hydr. Engrg., ASCE, vol. 9, no. 1 , pp. 42-50.
[26]W. Bioten, (2003), Hydrometry, Netherlands: Swets & Zeitlinger B. V., pp.87-92.
[27]Warner, R. F. and Kabaila, A. P, (1968). “Monte Carlo Study of Structural Safety”, Journal of the Structural Division, ASCE, Vol. 94, No. ST12, pp. 2847-2859.
[28]Y. C. Chen, (1998). , An efficient method of discharge measurement, Ph.D. University of Pittsburgh, Pittsburgh.
[29]Y. C. Chen, and C. L. Chiu, (2002). “An efficient method of discharge measurement in tidal stream,” Journal of Hydraulic Engineering, ELSEVIER, Vol. 265, pp. 212-224
[30]Yeh, K. -C, and Tung Y. -K, (1993). “Uncertainty and Sensitivity Analysis ofPit-Migration Model,” J. of Hydraulic Engineering, ASCE, Vol. 119(2), pp 262-283.
[31]Yen B. C., and Tung Y. K., (1993). “Some Recent Progress in Reliability Analysis for Hydraulic Design,” Reliability and Uncertainty Analyses in Hydraulic Design, ed. By Yen, B. C. and Y. K. Tung, pp. 17-34, ASCE, New York.
[32]王如意、易任 (2003),應用水文學,台灣:國立編譯館:2003
[33]吳宜珍 (2004),「序率模擬應用於水文分佈檢定信賴區間之建立」,碩士論文,國立台灣大學農業工程學研究所,台北。
[34]吳建德 (2003) ,水庫最佳安全檢查週期之建立-以石門水庫溢頂風險為例,碩士論文,台灣大學土木工程學研究所。
[35]呂欣懋 (2005),土石壩滲流之風險分析-以石門水庫為例,碩士論文,台灣大學土木工程學研究所,台北。
[36]杜俊明 (1999),河堤溢流風險之解析,碩士論文,國立成功大學水利及海洋工程學研究所,台南。
[37]林明坤 (2008),南科園區滯洪池可靠度之個案研究,碩士論文,國立成功大學水利及海洋工程學研究所,台南。
[38]林欣禾 (2005),應用率定曲線不確定分析於洪水即時預報之研究,碩士論文,國立成功大學水利及海洋工程學研究所,台南。
[39]林亮君 (2005),不確定環境下的河川總量管制策略,碩士論文,朝陽科技大學環境工程與管理學研究所,台中。
[40]洪華生、鄧漢忠著,蔡益超譯 (1987),工程或然率,台北,中國土木水利工程學會
[41]紀金輝 (2007),蒙地卡羅方法於臨床光子射束劑量分佈研究,碩士論文,中台科技大學放射科學研究所,台中。
[42]張汶璟 (2008),南勢溪攬勝橋之流量觀測方法的建立,碩士論文,國立台北科技大學土木防災研究所,台北。
[43]張哲豪 (1993),考量非常態分佈資訊於水利系統不確定性分析之研究,博士論文,國立交通大學土木工程學研究所,新竹。
[44]張哲豪、吳祥禎 (2003),「應用不確定性分析於流量延拾取線可靠資料年限決定之研究」,台灣水利,第51卷,第2期,第62-72頁。
[45]許介維 (2004),序率模擬應用於機率分布適合度檢定之評估,碩士論文,國立台灣大學農業工程學研究所,台北。
[46]許永佳 (2002),水壩溢流之風險分析-以翡翠水庫為例,碩士論文,台灣大學土木工程學研究所碩士論文,台北。
[47]郭庭鳴 (2008),以指標流速法推估感潮河段流量,碩士論文,國立台北科技大學土木防災研究所,台北。
[48]郭振泰、徐年盛、陳彥璋 (2005),「新店溪青潭自來水水源水質保護區水質水量監測計畫—臺北水源特定區水文觀測現代化建置」,國立台灣大學。
[49]陳以孟 (1990),溢洪道容量之可靠度分析,碩士論文,私立中原大學土木工程學研究所,桃園。
[50]黃志元 (1990),壩堤洪水溢流之風險及不確定性分析,碩士論文,國立成功大學水利及海洋工程研究所,台南。
[51]黃信智 (2004),灰色系統理論與系統動力學之應用-以污水處理廠為例,碩士論文,朝陽科技大學環境工程與管理學研究所,台中。
[52]黃翰林 (1996),河堤溢流之風險可靠度分析,碩士論文,國立成功大學水利及海洋工程學研究所,台南。
[53]楊孝忠 (2006),杜普勒流速儀在高流量觀測上之應用,碩士論文,國立台北科技大學土木防災研究所,台北。
[54]楊錦釧、湯有光 (1992),「水文模式不定性分析報告及其在水工結構之可靠度研究(一)」,行政院農業委員會計畫報告,農委會81 農建-12.2-林-05(7)
[55]劉家豪 (2002),普萊式流速儀量測不確定度評估,碩士論文,國立交通大學土木工程學研究所,新竹。
[56]顏本琦、徐享崑、郭振泰 (1992),「水資源風險與可靠度分析簡介」,台灣水利,第40卷,第4期,第1-11頁。
[57]龔志富 (2007),聯合波浪與水位機率之分佈,碩士論文,國立成功大學水利及海洋工程學研究所,台南。