現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:非飽和紅土K0 壓密行為之研究 [以論文名稱查詢館藏系統]
論文英文名稱:K0 Consolidation Behavior of Unsaturated
Lateritic Soil [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:97
出版年度:98
中文姓名:陳家豪
英文姓名:Chia-Hao Chen
研究生學號:95428036
學位類別:碩士
語文別:中文
口試日期:2009-07-03
論文頁數:203
指導教授中文名:魏敏樺
指導教授英文名:Meen-Wah Gui
口試委員中文名:陳主惠;馮道偉
口試委員英文名:Chu-Hui Chen;Tao-Wei Feng
中文關鍵詞:K0 壓密靜止土壓力係數非飽和土壤壓密係數基質吸力
英文關鍵詞:K0-consolidationcoefficient of earth pressure at restunsaturated soilmatric suction
論文中文摘要:Terzaghi(1943)提出飽和土一維壓密的經典理論,詳細說明土壤滲流對於土壤沈陷之影響,至今已有相當成熟技術發展與應用,並且成功解決關於地工結構物加載所產生的地表沈陷問題。但對於非飽和土壤領域之壓密行為目前卻鮮少被人提及。
本研究為探討林口紅土非飽和壓密行為,將非飽和三軸系統加以改良,內部使用壓密鋼環束制試體,使試體能處於K0 狀態下進行非飽和壓密。整組非飽和K0 壓密試驗是將常含水量試驗、壓密試驗,增加基質吸力試驗相互串連循環而成,可探討基質吸力與垂直載重交互作用下,非飽和紅土K0 壓密時之水體積、土體積變化。且利用非飽和一維壓密理論,預測非飽和K0 壓密之土體積變化與水體積變
化,再與實驗值結果加以對照。另外觀察常含水量試驗法,可提供不同基質吸力的孔隙水壓的激發資訊,瞭解基質吸力與孔隙水壓參數Bw 之關係。
為了進一步瞭解非飽和紅土K0 壓密之靜止土壓力係數變化,故在壓密鋼環上黏貼應變計,利用電壓與應力關係求得試體側向土壓力變化。並使用前人所提議之非飽和K0 模型,來預測本試驗研究之K0 變化,探討二者K0 模型與實際量測K0值之差異。
論文英文摘要:Terzaghi’s one-dimensional consolidation theory that relates pore water pressure to settlement has been successfully applied to saturated soil. However, the use of this theory to unsaturated soil has rarely even been discussed. In this study, unsaturated K0 consolidation experiments that involved constant water content test, consolidation testand increase of matric suction test have been used to investigate the changes in water and soil volumes change of unsaturated lateritic soil. The experiments were conducted in an oedometer-type ring placed in an advanced triaxial apparatus for unsaturated soils.
The one-dimensional consolidation theory was then used to compare and contrast the experimental resutl. Good agreement has been obtained between the two sets of result.
論文目次:中文摘要 I
英文摘要 II
誌 謝 III
目 錄 IV
表目錄 II
圖目錄 III

第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究方法與內容 2
1.3 論文架構與分章概述 3
第二章 文獻回顧 5
2.1 前言 5
2.2非飽和土壤 6
2.2.1非飽和土壤的定義 6
2.2.2非飽和土壤之微觀特性 8
2.2.3 土壤的吸力理論 12
2.2.4非飽和土壤之有效應力變化 12
2.2.5非飽和應力張量之表示 14
2.3非飽和土壤之體積變化理論 16
2.3.1體積變化和變形的概念 17
2.3.3彈性形式 18
2.3.4液相的組合關係 22
2.3.5空氣的體積變化 22
2.3.6 K0加載 24
2.3.7非飽和土壓縮性方程之表現 25
2.3.8驗證非飽和土壤組合面的唯一性 29
2.3.9學者對於組合面唯一性的驗證 32
第三章 改良之非飽和K0壓密系統 43
3.1介紹 43
3.2先前學者之研究 45
3.3改良之非飽和K0壓密儀系統 48
3.3.1自動化伺服控制系統 49
3.3.2 K0壓密環與應變計 52
3.3.3高進氣陶瓷板 57
3.4 試驗儀器之校正 59
3.4.1壓力/體積控制系統和軸向載重儀 59
3.4.2 K0壓密環之應力標定 60
3.4.3載重位移速率之標定 62
第四章 試驗過程與結果討論 64
4.1介紹 64
4.2紅土來源及現地地質地形概述 66
4.3紅土物理特性 68
4.3 夯實試驗結果 71
4.4 單向度壓密試驗結果 72
4.5. 收縮試驗 78
4.6 壓力鍋試驗與鹽溶液試驗 79
4.7 非飽和紅土K0壓密試驗 83
4.7.1非飽和K0壓密試驗流程 83
4.7.1.1儀器與試體備製 84
4.7.1.2非飽和K0壓密試驗流程 85
4.7.2非飽和K0壓密試驗結果 93
4.7.2.1增加基質吸力試驗(M 試驗) 93
4.7.2.2常含水量試驗(CW 試驗)與孔隙水壓參數Bw 97
4.7.2.3壓密試驗(C 試驗) 104
4.7.4非飽和K0壓密試驗之靜止土壓力係數 109
4.7.4水相壓密係數 121
4.7.5水體積變化係數 與土體積變化係數 126
第五章 理論與實驗之擬合 131
5.1介紹 131
5.2非飽和土壤壓密理論之文獻綜述 132
5.2.1非飽和壓密方程式之假設與推導 135
5.2.2一維度非飽和壓密之概念與分析流程 139
5.2.3小結 145
5.2.4非飽和K0壓密曲線模擬結果 146
5.3非飽和K0土壓力 155
5.3.1非飽和K0土壓力理論 155
5.3.2非飽和土K0土壓力係數分析流程 158
5.4土壤-水份特性曲線與滲透係數經驗模型 168
5.4.1 van Genuchten(1980)SWCC模型 168
5.4.2 van Genuchten(1980)滲透係數模型 171
5.4.3滲透係數模型與試驗結果之比較 172
5.4.4小結 177
第六章 結論與建議 178
6.1 結論 178
6.2 建議 179
參考文獻 180
符號彙編 183
A. 土壤基本物理試驗 189
A.1含水量試驗 (Water Content Test) …189
A.2阿太堡限度試驗 (Atterberg Limit Test) 189
A.3粒徑分佈試驗 (Grain-Size Distribution Test) 191
A.4比重試驗 (Specific Gravity Test) 192
A.5夯實試驗 (Compaction Test) 193
A.6 單向度壓密試驗 (Consolidation Test) 194
A.6.1預壓密應力、壓縮曲線、再壓曲線之圖解步驟 195
A.7 收縮試驗 (Shrinkage Test) 196
B. 土壤水分特性曲線試驗 198
B.1壓力鍋試驗 (Pressure Plate Extractor Test) 198
B.2鹽溶液試驗 (Salt Solution Test) 201
作者簡介 203
論文參考文獻:參考文獻
[1]Andrawes, K. Z. and El-sohby, M. A. (1973). "Foctors Affecting Coefficient of Earth Pressure K0." Journal of the Soil Mechanics and Foundations Division, ASCE, 99(7), 527-539.
[2]ASTM D1557-91. (2002). "Standard Test Method for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lb/ft3 (2,700 kN-m/m3))1." West Conshohocken. Pa.
[3]ASTM D2216-98. (2002). "Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil." West Conshohocken. Pa.
[4]ASTM D422-63. (2002). "Standard Test Method for Particle-Size Analysis of Soils." West Conshohocken. Pa.
[5]ASTM D4318-98. (2002). "Standard Test Method for Liquid Limit, and Plasticity Index of Soils." West Conshohocken. Pa.
[6]ASTM D854-98. "Standard Test Method for Specific Gravity of Soils." West Conshohocken. Pa.
[7]Barden, L. (1965). "Consolidation of Compacted and Unsaturated Clays." Geotechnique, 15(3), 267-286.
[8]Barden, L., Madedor, A., and Sides, G. (1969). "Volume change characteristics of unsaturated clay." Journal of the Soil Mechanics and Foundations Division, ASCE, 95, 33–51.
[9]Biot, M. A. (1941). "General Theory of Three-Dimensional Consolidation." J. Appl. Phys., 12(2), 155-164.
[10]Bishop, A. W. (1960). "The Principles of Effective Stress." Published in Teknis Ukeblad, 106(39), 859-863.
[11]Buckingham, E. (1907). "Studies on the movement of soil moisture. USDA Bur." Soils Bull, 38.
[12]Coleman, J. D. (1962). "Stress-strain relations for partly saturated soils." Geotechnique, 12(4), 348–350.
[13]Corey, A. T. et al. (1967). "Comparative Terminologies for Water in the Soil-Plant-Atmosphere System." In Irrigation in Agricultural Soils, Hagan, R. M. Et Al., Eds., Amer. Soc. Agron., Mono., 11(12).
[14]Corey, A. T., and Kemper, W. D. (1961). "Concept of total potential in water and its limitations." Soil Sci., 91(5), 299-302.
[15]Croney, D., and Coleman, J. D. (1948). "Soil thermodynamics applied to the movement of moisture in road foundations." Proc. 7th Int. Cong. Appl. Mech, 163-177.
[16]Davies, J. T., and Rideal, E. K. (1963). "lnterfacial Phenomena." Academic Press, New York, 747.
[17]Fredlund, D. G. (1979). "Second Canadian Geotechnical Colloquium: Appropriate concepts and technology for unsaturated soils." Canadian Geotechnical Journal, 16(1), 121-139.
[18]Fredlund, D. G., and Morgenstern, N. R. (1977). "Stress state variables for unsaturated soils." Journal of the Geotechnical Engineering Division, 103(5), 447-466.
[19]Fredlund, D. G., and Morgenstern, N. R. (1976). "Constitutive relations for volume change in unsaturated soils." Canadian Geotechnical Journal, 13(3), 261-276.
[20]Fredlund, D. G., and Rahardjo, H. (1993). Soil Mechanics for Unsaturated Soils. Wiley-Interscience Publication.
[21]Fredlund, D. G. (1978). "Second Canadian Geotechnical Colloquium: Appropriate Concepts and Technology for Unsaturated Soils." Canadian Geotechnical Journal, 16(1), 121-139.
[22]Fredlund, D. G., and Hasan, J. U. (1979). "One-dimensional consolidation theory: unsaturated soils." Canadian Geotechnical Journal, 16(3), 521-531.
[23]Fredlund, D. G., and Rahardjo, H. (1986). "Unsaturated Soil Consolidation Theory and Laboratory Experimental Data." Consolidation of Soils: Testing and Evaluation: a Symposium, ASTM International, 154-169.
[24]Fredlund, M. D. (2004). SOILVISION a knowledge-Based Soils Database. Saskatoon, Saskatchewan, canada.
[25]Fung, Y. C. (1965). Foundations of Solid Mechanics. NJ: Prentice-Hall, Englewood Cliffs.
[26]Gui, M. W. and Hsu., C. S. (2009). "Generalized fitting parameters of three permeability functions for predicting water coefficient of permeability of lateritic soil." ASTM Geotechnical Testing Journal, 32(5).
[27]Hilf, J. W. (1956). An Investigation of Pore-Water Presure in Compacted Cohesive Soil. Ph.D. Dissertation, 654.
[28]Ho, C. S. (1969). "Some stratigraphic-structural problems of the Linkou terrace in northern Taiwan." Proc. Geol. Soc, 12, 63-76.
[29]Holtz, R. D., and William, D. K. (1981). An Introduction to Geotechnical Engineering. Englewood Cliffs.
[30]Khalili, N., and Khabbaz, M. H. (1998). "A unique relationship for X for the determination of the shear strength of unsaturated soils." Geotechnique, 48(5), 681-687.
[31]Laurent F. Gareau, Frans Molenkamp, Jitendra Sharma. (2006). "An Improved Oedometer Apparatus to Measure Lateral Stress during Testing." ASTM, Geotechnical Testing Journal, 29(3), 1-7.
[32]Lu, N., and Likos, W. J. (2004). Unsaturated Soil Mechanics. John Wiley and Sons .
[33]Matyas, E. L., and Radhakrishna. (1968). "Volume Change Characteristics of Partially Saturated Soils." Geotechnique, 18(4), 432-448.
[34]Okochi, Y. and Tatsuoka, F. (1984). "Some Factors Affecting K0-Values of Sand Measured in Triaxial Cell." Soils and Foundations, 24(3), 52-68.
[35]Rahardjo, H. (1990). "The study of undrained and drained behavior of unsaturated soils." PhD thesis, University of Saskatchewan, Saskatchewan, Canada.
[36]Rahardjo, H. and Fredlund, D. G. (1996). "Consolidation Apparatus for Test Unsaturated Soil." ASTM, Geotechnical Testing Journal, GTJODJ, 19(4), 341-353.
[37]Rahardjo, H., and Fredlund, D. G. (1995). "Experimental Verification of the theory of consolidation for Unsaturated Soils." Canadian Geotechnical Journal, 32, 749-766.
[38]Schofield, R. (1935). "The pF of the Water in Soil." Trans. 3rd Int. Congress Soil Science, 2, 37-48.
[39]Sillers, W. S., Fredlund, D. G., and Zakerzadeh, N. (2001). "Mathematical attributes of some soil-water characteristic curve models." Geotech.Geol.Eng., 19(3-4), 243-283.
[40]Terzaghi, K. (1943). "Theoretical Soil Mechanics." New York.
[41]van Genuchten, M. T. (1980). "A Closed Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils." Soil Sci. Soc. Am. J., 44, 892-898.
[42]Whitlow, R. (1997). Basic soil mechanics. Longman Group Limited, England.
[43]游淳名. (2005). "非飽和紅土剪力強度之研究-以林口台地為例." 碩士論文, 國立台北科技大學土木工程學系, 台北.
[44]萬獻銘、唐淑芬、呂仲泰. (1985). "林口台地紅土之黏土礦物組成、構造及性質." 礦物技術, 23(3), 177-195.
[45]許俊森. (2006). "林口臺地非飽和紅土滲透性之研究." 碩士論文, 國立台北科技大學土木工程學系, 台北.
論文全文使用權限:同意授權於2012-09-03起公開