現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:翡翠水庫集水區水文暨水質模擬 [以論文名稱查詢館藏系統]
論文英文名稱:Modeling Hydrologic and Water Quality Response of Feitsui Reservoir Watershed [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:97
出版年度:98
中文姓名:陳立宗
英文姓名:Li-Tzong Chen
研究生學號:95428076
學位類別:碩士
語文別:中文
口試日期:2009-01-20
論文頁數:87
指導教授中文名:朱子偉
口試委員中文名:陳彥璋;陳世楷;譚智宏
中文關鍵詞:非點源污染SWAT模式(Soil and Water Assessment Tool)集水區最佳管理作業(BMPs)營養鹽
英文關鍵詞:Nonpoint source pollutionSWATWatershedBMPsNutrient
論文中文摘要:翡翠水庫隨著水庫蓄水範圍使用管理辦法等法規的長期實施,點源污染已逐步控制,非點源污染問題的重要性則相對提高。尤其北宜高速公路通車後對於水庫水質的影響,值得持續關注。集水區內非點源污染的傳輸相當複雜,若欲藉由大規模的監測,以獲得合理的評估,在實際上並不可行。故集水區水質模式在經過實測值檢定與驗證後,即成為分析不同土地管理措施下對水文暨水質衝擊的有效工具。
本研究旨在檢驗SWAT(Soil and Water Assessment Tool)模式於模擬翡翠水庫集水區非點源污染的適用性。SWAT模式為集水區尺度、連續時間模擬的模式。此模式整合了CREAMS、GLEAMS和EPIC等美國農業研究中心所研發的模式,以評估集水區在不同管理作業下對水文、泥砂、營養鹽和農藥承載的影響。
研究共收集2002至2006年等資料,以坪林站的流量、泥砂量和營養鹽資料進行模式的檢定和驗證。其中前三年的資料執行檢定,並以2005至2006年的資料驗證結果。月流量經檢定和驗證後,效率係數分別為0.55和0.73,顯示SWAT對水文過程模擬的能力相當不錯;另外5年累積的模擬泥砂總量與實測值的相對誤差只有-0.57%,顯示長期的泥砂承載模擬也十分合理。SWAT對總磷的模擬也非常合理,其月預測值檢定與驗證後的效率係數分別為0.47和0.65;硝酸態氮效率係數稍低,但在統計上仍可被接受,然而模式則明顯低估有機氮與氨氮的承載。綜合驗證的結果,可知SWAT具有長期模擬混合土地使用集水區水文暨水質反應的能力。檢定和驗證後的SWAT模式可進一步標定集水區中非點源承載較嚴重的關鍵區域,再藉由設置適當的BMPs,並應用總量管制(TMDL)的方法,期能有效地控制集水區的非點源污染,以維護翡翠水庫的水質。
論文英文摘要:During the past decades, point source has been reduced effectively through regulation that the reservoir administration has enforced, therefore, nonpoint source pollution is proved to be the major contribution to the eutrophication problem. The difficulty in assessing and identifying nonpoint source pollution resides in the complex nature of nonpoint source. Moreover, continuous water quality monitoring is expensive and spatially impractical in mixed land use watersheds. Accordingly, the validated watershed-scale water quality models are helpful in assessing water quality impacts which result from different management. This paper aims to calibrate and validate the capability of SWAT(Soil and Water Assessment Tool) model in predicting the nonpoint source pollution generated from the Feitsui Reservoir watershed. SWAT is a watershed-scale, continuous time, physically based hydrologic/water quality model with spatially explicit parameterization. Data collected for major model inputs include landuse and soil distribution maps which were generated by GIS tool as well as weather data from a series of stations within watershed. Flow, sediment and nutrient data in Pinglin station were used to calibrate(2002-2004) and validate(2005-2006) the model’s performance. Preliminary results in flow showed a strong agreement between monthly measured and simulated data with efficiency coefficients greater than 0.5. The validated SWAT model then will be a useful tool to evaluate the effects of appropriate BMPs implementation to control nonpoint source pollution effectively.
論文目次:中文摘要 i
英文摘要 iii
誌謝 iv
目錄 v
表目錄 vi
圖目錄 viii
第一章 前言 1
1.1 研究動機 1
1.2 研究目的 3
第二章 文獻回顧 4
第三章 研究方法 10
3.1 模式背景 10
3.2 模式介紹 11
3.2.1 土地覆蓋/植物生長 11
3.2.2 管理措施 11
3.2.3 水文 12
3.2.4 泥砂量 20
3.2.5 氮 21
3.2.6 磷 28
3.3 研究流程 35
3.3.1 研究範圍 35
3.3.2 資料蒐集 36
3.3.3 模式的檢定與驗證 41
3.3.4 關鍵區域的分析 47
第四章 結果與討論 48
4.1 流量 48
4.2 泥砂量 51
4.3 營養鹽 56
4.3.1 有機磷 57
4.3.2 溶解性磷 60
4.3.3 總磷 63
4.3.4 有機氮 66
4.3.5 氨氮 68
4.3.6 硝酸態氮 71
4.3.7 總氮 74
4.4 關鍵區域 77
第五章 結論與建議 81
參考文獻 83
論文參考文獻:[1] Allen, R. G. (1986). “A Penman for all seasons,” J. Irrig. and Drain Engng., ASCE, Volume 112, No. 4, pp. 348-368.
[2] Allen, R. G., Jensen, M. E., Wright, J. L. and Burman, R. D. (1989). “Operational estimates of evapotranspiration,” Agron. J., Volume 81, pp. 650-662.
[3] Arnold, J. G., Williams, J. R., Nicks, A. D. and Sammons, N. B. (1990). “SWRRB:A basin scale simulation model for soil and water resources management,” Texas A&M Univ. Press.
[4] Arnold, J. G., Neitsch, S. L., Kiniry, J. R., Williams, J. R. and King, K. W. (2002). Soil and Water Assessment Tool Theoretical Documentation Version 2000, GSWRL Report 02-01.
[5] Arnold, J. G., Neitsch, S. L., Kiniry, J. R., Srinivasan, R. and Williams, J. R. (2002). Soil and Water Assessment Tool User’s Manual Version 2000, GSWRL Report 02-02.
[6] Abeyou Wale (2008). Hydrological Balance of Lake Tana Upper Blue Nile Basin, Ethiopia, Master Thesis, pp. 1-94.
[7] Barrow, N. J. and Shaw, T. C. (1975). “The slow reactions between soil and anions. 2. Effect of time and temperature on the decrease in phosphate concentration in soil solution,” Soil Sci., Volume 119, pp. 167-177.
[8] Bagnold, R. A. (1977). “Bedload transport in natural rivers,” Water Resour. Res., pp. 303-312.
[9] Brown, L. C. and Barnwell, Jr, T. O. (1987). The enhanced water quality models QUAL2E and QUAL2E-UNCAS documentation and user manual, USEPA, Athens.
[10] Bhuyan, S. J., Koelliker, J. K., Marzen, L. J. and Harrington, J. A. (2003). “An integrated approach for water quality assessment of a Kansas watershed,” Environmental Modelling and Software, pp. 473-484.
[11] Benaman, J., Shoemaker, C. A. and Haith, D. A. (2005). “Calibration and Validation of Soil and Water Assessment Tool on an Agricultural Watershed in Upstate New York,” JOURNAL OF HYDROLOGIC ENGINEERING, pp. 363.
[12] Chung, S. W., Gassman, P. W., Kramer, L. A., Williams, J. R. and Gu., R. (1999). ”Validation of EPIC for two watersheds in southwest Iowa,” J. Environ. Qual., pp. 971-979.
[13] Green, W. H. and Ampt, G. A. (1911). “Studies on soil physics, 1. The flow of air and water through soils,” Journal of Agricultural Sciences, Volume 4, pp. 11-24.
[14] Godwin, D. C., Jones, C. A., Ritchie, J. T., Vlek, P. L. G. and Youngdahl, L. G. (1984). “The water and nitrogen components of the CERES models. p. 95-100. In Proc. Intl. Symp. on Minimum Data Sets for Agrotechnology Transfer,” Patancheru, India. Intl. Crops Research Institute for the Semi-Arid Tropics.
[15] Hargreaves, G. L., Hargreaves, G. H. and Riley, J. P. (1985). “Agricultural benefits for Senegal River Basin,” J. Irrig. and Drain. Engr., Volume 111, No. 2, pp. 113-124.
[16] Holvoet, K., van Griensven, A., Seuntjens, P. and Vanrolleghem, P. A. (2005). ”Sensitivity analysis for hydrology and pesticide supply towards the river in SWAT,” Physics and Chemistry of the Earth, Volume 30, pp. 518-526.
[17] Hu, X., McIsaac, G. F., David, M. B. and Louwers, C. A. L. (2007). “Modeling Riverine Nitrate Export from an East-Central Illinois Watershed Using SWAT,” J. Environ., pp. 996-1005.
[18] James, L. D. and Burgess, S. J. (1982). “Selection calibration, and testing of hydrologic models. In:Hann, C. T., Johnson, H. P., Brakensiek, D. L. (Eds), Hydrologic Modelling of Small Watershed,” ASAE.
[19] Jones, C. A. C. V. Cole, Sharpley, A. N. and Williams, J. R. (1984). “A simplified soil and plant phosphorus model. I. Documentation,” Soil Sci. Soc. Am. J., Volume 48, pp. 800-805.
[20] Knisel, W. G.(1980). “CREAMS, a field scale model for chemicals, runoff and erosion from agricultural management systems,” USDA Conservation Research Rept. No. 26.
[21] Leonard, R. A., Knisel, W. G. and Still, D. A. (1987). “Groundwater loading effects on agricultural management systems,” ASAE, pp. 1403-1428.
[22] Loague, K. and Green, R. E. (1991). “Statistical and graphical methods for evaluating solute transport models: Overview and application,” J. Contaminant Hydrology, pp. 51-73.
[23] Lenhart, T., Eckhardt, K., Fohrer, N. and Frede, H. G. (2002). ”Comparison of two different approaches of sensitivity analysis,” Physics and Chemistry of the Earth , Parts A/B/C 27, pp. 645.
[24] Monteith, J. L. (1965). “Evaporation and the environment. p. 205-234. In The state and movement of water in living organisms,” XIXth Symposium, Swansea, Cambridge University Press.
[25] McElroy, A. D., Chiu, S. Y., Nebgen, J. W., Aleti, A. and Bennett, F. W. (1976). “Loading functions for assessment of water pollution from nonpoint sources,” Environ. Prot. Tech. Serv., EPA 600/2-76-151.
[26] Munns, D. N. and Fox, R. L. (1976). “The slow reaction which continues after phosphate adsorption: Kinetics and equilibrium in some tropical soils,” Soil Sci. Soc. Am. J., Volume 40, pp. 46-51.
[27] Nash, J. E. and Sutcliffe, J. V. (1970). “River flow forecasting through conceptual models. Part 1. A discussion of principles,” Journal of Hydrology, pp. 282-290.
[28] Penman, H. L. (1956). “Evaporation: An introductory survey,” Netherlands Journal of Agricultural Science, Volume 4, pp. 7-29.
[29] Priestley, C. H. B. and Taylor, R. J. (1972). “On the assessment of surface heat flux and evaporation using large-scale parameters,” Mon. Weather. Rev., Volume 100, pp. 81-92.
[30] Rajan, S. S. S. and Fox, R. L. (1972). “Phosphate adsorption by soils. 1. Influence of time and ionic environment on phosphate adsorption,” Commun. Soil. Sci. Plant Anal, Volume 3, pp. 493-504.
[31] Reddy, K. R., Khaleel, R., Overcash, M. R. and Westerman, P. W. (1979). “A nonpoint source model for land areas receiving animal wastes: II. Ammonia volatilization.” Trans. ASAE, Volume 22, pp. 1398-1404.
[32] Reungsang, P., Kanwar, R. S., Jha, M., Gassman, P. W., Ahmad, K. and Saleh, A. (2005). “Calibration and Validation of SWAT for the Upper Maquoketa River Watershed,” Working Paper 05-WP 396.
[33] Soil Conservation Service (1972). Section 4: Hydrology In National Engineering Handbook, Soil Conservation Service, Washington, D.C..
[34] Seligmand, N. G. and van Keulen, H. (1981). “PAPRAN: A simulation model of annual pasture production limited by rainfall and nitrogen. p. 192-221. In M.J. Frissel and J.A. van Veeds. (eds) Simulation of nitrogen behaviour of soil-plant systems,” Proc. Workshop, Wageningen.
[35] Sharpley, A. N. (1982). “A prediction of the water extractable phosphorus content of soil following a phosphorus addition,” J. Environ. Qual., Volume 11, pp. 166-170.
[36] Thornthwaite, C. W. (1948). “An approach toward a rational classification of climate,” Geographical Review, Volume 38, pp. 55-94.
[37] Tripathi, M. P., Panda, R. K., Raghuwanshi, N. S. and Singh, R. (2004). “Hydrological modelling of a small watershed using generated rainfall in the soil and water assessment tool model,” Hydrol. Process., pp. 1811–1821.
[38] Wischmeier, W. H. and Smith, D. D. (1965). “Predicting rainfall-erosion losses from cropland east of the Rocky Mountains,” Agriculture Handbook 282, USDA-ARS.
[39] Williams, J. R. (1975). “Sediment-yield prediction with universal equation using runoff energy factor. p. 244-252. In Present and prospective technology for predicting sediment yield and sources: Proceedings of the sediment yield workshop,” USDA Sedimentation Lab., Oxford.
[40] Williams, J. R. and Hann, R. W. (1978). “Optimal operation of large agricultural watersheds with water quality constraints,” Texas Water Resources Institute, Texas A&M Univ., Tech. Rept. No. 96.
[41] Wischmeier, W. H. and Smith, D. D. (1978). “Predicting rainfall erosion losses: a guide to conservation planning,” Agriculture Handbook 282, USDA-ARS.
[42] Williams, J. R. (1980). “SPNM, a model for predicting sediment, phosphorus, and nitrogen yields from agricultural basins,” Water Resour. Bull., pp. 843-848.
[43] Williams, J. R., Jones, C. A. and Dyke, P. T. (1984). “A modeling approach to determining the relationship between erosion and soil productivity,” ASAE, pp. 129-144.
[44] Williams, J. R., Nicks, A. D. and Arnold, J. G. (1985). “Simulator for water resources in rural basins,” Journal of Hydraulic Engineering, Volume 6, no. 111, pp. 970-986.
[45] Wang, X., Harmel, R. D., Williams, J. R. and Harman, W. L. (2006). ”Evalustion of EPIC for assessing crop yield, runoff, sediment and nutrient losses from watersheds with poultry litter fertilization,” Transactions of the American Society of Agricultural Engineers, pp. 47–59.
[46] 方世榮(2001),統計學導論,華泰文化事業股份有限公司,台北市,第547頁。
[47] 行政院農業委員會水土保持局(1986),山坡地土壤調查報告(臺北縣、基隆市暨臺北市)。
[48] 行政院環境保護署(2008),「環署挹注2億經費保護飲水」,環保政策月刊,第4頁。
[49] 李珮璇(2002),暴雨初期沖刷對水源水質衝擊之評估,碩士論文,國立台北科技大學環境規劃與管理研究所,台北。
[50] 胡毓解(2004),農業非點源污染模式之應用-以萬安集水區為例-,碩士論文,國立屏東科技大學水土保持系碩士班,屏東。
[51] 逢甲大學地理資訊系統研究中心(2000),台灣地區重要水庫集水區水資源資料庫建置及保育計畫,經濟部水資源局委託。
[52] 陳彥甫(2003),茶園及林地非點單位污染負荷之研究,碩士論文,國立台北科技大學環境規劃與管理研究所,台北。
[53] 郭鎮維、李建堂(2004),「翡翠水庫上游集水區水質趨勢分析」,地理學報,第三十八期,第111-128頁。
[54] 陳彥璋、林鎮洋、余嘯雷、朱子偉、張嘉玲(2006),翡翠水庫蓄水範圍及保護帶保育計畫,經濟部水利署臺北水源特定區管理局委託。
[55] 郭振泰、陳彥璋、黃啟銘(2007),河川生態廊道水質與生態模式之功能評估與分析,經濟部水利署臺北水源特定區管理局委託。
[56] 張玉姍(2004),翡翠水庫集水區非點源污染整治區域優先順序之評估,碩士論文,國立台北科技大學環境規劃與管理研究所,台北。
[57] 張尊國、張文亮、鄭克聲、林裕彬、徐貴新、魏敏裕(2006),翡翠水庫水源保護區污染源調查計畫,行政院環境保護署委託。
[58] 黃建智(2002),流域集水區非點源污染模式之研究,碩士論文,國立成功大學環境工程研究所,台南。
[59] 黃建源、胡惠宇、陳慧容、陳建宏(2002),「非點源汙染防治與最佳管理作業(BMPs)應用」,環保月刊,第2卷第12期,第87-95頁。
[60] 經濟部水利署(2001~2006),臺灣水文年報。
[61] 經濟部水利署(2008),水文水資源資料管理供應系統,http://gweb.wra.gov.tw/wrweb/。
[62] 翡翠水庫管理局(2002~2006),翡翠水庫操作年報。
[63] 臺北翡翠水庫管理局(2008),重要數據,http://www.feitsui.gov.tw/。
論文全文使用權限:同意授權於2019-08-31起公開