現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:群集分析於空間破壞機制之資料探勘 [以論文名稱查詢館藏系統]
論文英文名稱:A Data Mining for Spatial Fracture Mechanism Based on Cluster Analysis [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:98
出版年度:99
中文姓名:白裕猷
英文姓名:Yu-Yu Pai
研究生學號:96428075
學位類別:碩士
語文別:中文
口試日期:2010-01-21
論文頁數:114
指導教授中文名:張哲豪
指導教授英文名:Che-Hao Chang
口試委員中文名:陳立憲;彭淼祥
口試委員英文名:Li-Hsien Chen;miao-hsiang peng
中文關鍵詞:資料探勘空間資料探勘群集分析K-均值法自組織映射圖網路破壞機制
英文關鍵詞:Data MiningSpatial Data MiningCluster AnalysisK-MeansSOMFracture Mechanism
論文中文摘要:本文介紹了群集分析,應用在固體岩材受力作用,於不同的應力路徑下,探討其破壞機制的資料探勘 (Data Mining)。研究中,以群集分析方法中的K-均值法 (K-Means),與自組織映射圖網路 (SOM) 演算法建立分析模式。同時考慮兩種不同尺度之固體岩材破壞資料:大尺度為斷層錯動之三角點位水平變化,範圍為花東縱谷部分,長約159公里,寬約80公里,為空間資料型態;小尺度為脆性岩材之微震裂源演化,範圍為試驗材料本體部分,長約150公厘,寬約150公厘,為空間與時間的資料型態。前者進行海岸山脈三角點位「位移方向與位移量」之分類,與「斷層位置」空間範圍之推估。在已知群集數目下,將海岸山脈的三角點位與位移量,以本研究方法分類成北、中與南三段,其位移方向由南段西北方向轉至北段東北方向,位移量介於1.5(m)~5.5(m)之間。經比對專家經驗判釋,海岸山脈「位移方向、位移量與斷層位置」的成果,兩個方法在位移方向與位移量皆與其接近。而在斷層位置之推估上,K-Means 演算法所推估之斷層位置優於SOM 演算法,確可輔助人為判斷,且K-Means 演算法在執行時間上優於SOM 演算法。後者進行延-脆性破壞演化分類,與「彈-塑性區界面」空間範圍之推估。在未知群集數目下,將微震裂源分類成延性與脆性兩種破壞模式(演化),與彈性、塑性與脆性三個力學演化分區(空間分佈)。結合理論解析解與專家經驗組合的成果,作為比對值,本研究兩個方法中,以SOM 演算法之分類結果較與其相近,且在判斷「彈-塑性區界面」範圍的時間上,已從最久半天的分析時間,減少至需30分鐘到1小時的時間。從而達到客觀與減少時間之目的。
論文英文摘要:This study applies cluster analysis to solid-rock materials by different stress pathways, and explores data mining of fracture mechanism. Two cluster analysis methods, K-Means and Self-Organizing Map (SOM) were utilized to establish an analytical model. Two different scales of solid-rock material destruction data were utilized: large-scale data is the triangulation changes of fault dislocation, using the East Rift Valley section of Taiwan (length 159 km, width 80 km) as the experiment area, which represented a spatial data type; small-scale data are the evolution of microseismic sources, using Quasi-brittle rock as the test material (length 150mm, width 150mm), which represented a spatial and time data type. In the former experiment, the ‘direction’ and ‘amount’ of displacement of the East Rift Valley section of Taiwan was classified into three part: north, center, south, and figure out approximately location of the fault in the spatial coverage was estimated. The ‘direction’ of displacement was from northwest of south part to northeast of north part, and the ‘amount’ of displacement was from 1.5(m) to 5.5(m). After we compared the estimation results from professional experience, the estimation results using K-means and SOM were close to them, the fault location estimation results using K-Means were better than SOM, we conclude K-Means can assist artificial estimation and it was faster than SOM. The latter experiment test material is Quasi-brittle rock, ductility (ductile) and brittleness (brittle) destruction models by ‘occurring location’ and ‘occurring time’ of the microseismic source was classified into three part of mechanics space: elasticity, plasticity, brittleness. After we compared the estimation results from professional experience, the estimation results of SOM were more approximate to them, and the time spending on determine the range of ‘elasticity- plasticity interface zone’ was reduced 30min to 1hour, more efficient than estimation results.
論文目次:摘 要 i
ABSTRACT ii
致謝 iv
目錄 v
表目錄 vii
圖目錄 ix
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 3
1.2.1 資料探勘技術之發展與相關研究 3
1.2.2 群集分析方法之發展與相關研究 5
1.3 研究架構 10
第二章 空間資料探勘之群集分析方法 12
2.1 空間點資料之分類原理 12
2.2 K-Means演算法 14
2.3 自組織映射圖網路(SOM)演算法 16
2.4 分析工具 19
第三章 海岸山脈三角點位移之群集分析 27
3.1 資料概述 27
3.2 K-Means演算法分析與結果 33
3.2.1 K-Means演算法應用於海岸山脈位移分析 33
3.2.2 海岸山脈之斷層位置評估與比對(K-Means演算法) 36
3.3 SOM演算法分析與結果 39
3.3.1 SOM演算法應用於海岸山脈位移分析 39
3.3.2 海岸山脈之斷層位置評估與比對(SOM演算法) 50
第四章 脆性材料破壞演化之群集分析 53
4.1 資料概述 53
4.2 K-Means演算法分析與結果 58
4.2.1 K-Means演算法應用於微震裂源演化分析 58
4.2.2 推估微震裂源演化階段之時機與彈-塑性區界面範圍 64
4.2.3 推估之彈-塑性區界面半徑與理論解比較評估 71
4.3 SOM演算法分析與結果 74
4.3.1 SOM演算法應用於微震裂源演化分析 74
4.3.2 推估微震裂源演化階段之時機與叢聚時塑性區範圍 88
4.3.3 推估之彈-塑性區界面半徑與理論解比較評估 93
第五章 結論與建議 95
5.1 結論 95
5.2 建議 97
參考文獻 98
附錄A:台灣東部三角點水平變化之原始資料 102
附錄B:貫入破壞試驗耦合非破壞聲射技術之研究 109
附錄C:SOM演算法於微震裂源分類成果圖與理論解比較圖 114
論文參考文獻:[1] Bi, S., Xue, S., Xu, Y., Pei, A., “Spatial data mining in settlement archaeological databases based on vector features”, Fuzzy Systems and Knowledge Discovery, Volume 4, Article number 4666398, pp 277-281, 2008
[2] Biq, C. C., “Present-day manner of movement of the Coastal Range, eastern Taiwan, as reflected by triangulation changes”. Mem. Geol. Soc. China, 6, pp 35-40
[3] Birant, D. and Kut, A., “ST-DBSCAN: An algorithm for clustering spatial-temporal data”, Data and Knowledge Engineering, Volume 60, Issue 1, pp 208-221 , 2007
[4] Cai, Q., He, H., Man, H., “SOMSO A self-organizing map approach for spatial outlier detection with multiple attributes”, Jisuanji Gongcheng/Computer Engineering , Article number 5178884, pp 425-431, 2009
[5] Chen L.H., “Failure of Rock under Normal Wedage Indentation”, Ph. D. Thesis, University of Minnesota,2002
[6] de Castro Leao, A., Duarte Doria Neto, A., Bernardete Cordeiro de Sousa, M.B.C., “New developmental stages for common marmosets (Callithrix jacchus) using mass and age variables obtained by K-means algorithm and self-organizing maps (SOM)”, Computers in Biology and Medicine, Volume 39, Issue 10, pp 853-859, 2009
[7] Deng, M., Liu, Q., Li, G., Cheng, T., “An adaptive spatial clustering algorithm based on the minimum spanning tree-like”, Proceedings of SPIE - The International Society for Optical Engineering, Volume 7492, Article number 74921Z , 2009
[8] Du, F., Rao, N., Guo, J., Yuan, Z., Wang, R., “Mining gene network by combined association rules and genetic algorithm”, Communications, Circuits and Systems, Article number 5250446, pp 581-585, 2009
[9] Elhadary, R.S., Tolba, A.S., Elsharkawy, M.A., Karam, O.H., “An efficient and robust combined clustering technique for mining in large spatial databases”, Computer Engineering and Systems, Article number 4447083, pp 439-445, 2007
[10] Folino, G., Forestiero, A., Papuzzo, G., Spezzano, G., “A grid portal for solving geoscience problems using distributed knowledge discovery services”, Future Generation Computer Systems , Volume 26, Issue 1, pp 87-96, 2010
[11] Han, J., “Data Mining Concepts and Techniques”, 2000
[12] Henriques, R., Bacao, F., Lobo, V., “GeoSOM suite A tool for spatial clustering”, Lecture Notes in Computer Science , Volume 5592 LNCS, Issue PART 1, pp 453-466, 2009
[13] Jantan, H., Hamdan, A.R., Othman, Z.A, Weinstein, J.N., “Classification for talent management using decision tree induction techniques”, Data Mining and Optimization, Article number 5341916, pp 15-20, 2009
[14] Jia, Z., “An expert system based on spatial data mining used decision tree for agriculture land grading”, Intelligent Computing Technology and Automation, Volume 4, Article number 5288233, pp 142-145, 2009
[15] Jiao, L. and Liu, Y., “Research on self-organizing clustering of spatial points”, Proceedings of SPIE - The International Society for Optical Engineering, Volume 6751, Article number 67510I, 2007
[16] Kohonen T., “ Self-organization maps: Optimization approaches”, in Artificial Neural Networls, T. Kohonen, K. Makisara, O. Simula, and J. Kangas, Eds. Amsterdam, The Netherlands: Elsevier, pp 981-990, 1991
[17] Kohonen T., “Self-Organization and Associative Memory”, Springer-Verlag, Berlin, 1988
[18] Kohonen T., “The Self-Organization Map”, Springer, New York, 1997
[19] Lu, J.-S., Huang, T.-L., Wang, C.-Y., “Data mining on source water quality (Tianjin, China) for forecasting algae bloom based on artificial neural network (ANN)”, Computer Science and Information Engineering, Volume 7,Article number 5170307, pp 191-195, 2009
[20] Mutalib, S., Ali, N.A., Rahman, S.A., Mohamed, A., “An exploratory study in classification methods for patients' dataset”, Data Mining and Optimization, Article number 5341907, pp 79-83, 2009
[21] Sakthi, U. and Bhuvaneswaran, R.S., “Incremental and SQL-based data grid mining algorithm for mobility prediction of mobile users”, Computational Science and Its Applications, Article number 5260956, pp 71-78, 2009
[22] Thirumurugan, S. and Suresh, L., “Statistical spatial clustering using spatial data mining”, IET Conference Publications, Issue 535 CP, pp 26-29 , 2008
[23] Vesanto, J. and Alhoniemi, E., “Clustering of the self-organizing map”, IEEE Transactions on Neural Networks , Volume 11, Issue 3, pp 586-600, 2000
[24] Wan, S. , Lei, T.C., Chou, T.Y., “A novel data mining technique of analysis and classification for landslide problems”, Natural Hazards, Volume 52, Issue 1, pp 211-230, 2010
[25] Wang, J., Zhang, X., Zhou, H., “Genetic K-means algorithm for spatial clustering”, Jisuanji Gongcheng/Computer Engineering , Volume 32, Issue 3, pp 188-190, 2006
[26] Zhang, Z., Zhang, J., Xue, H., “Improved K-means clustering algorithm”, Future Generation Computer Systems , Volume 5, Article number 4566809, pp 169-172, 2008
[27] 李瓊武、余水倍,台灣東部地殼水平變動之研究,第六屆測量學術及運用研討會論文集,1987
[28] 林佳慶,應用Voronoi cell 距離改良模糊Kohonen群集網路,碩士論文,南台科技大資訊管理學系,2003
[29] 林美君、蘇明道、溫在弘,空間點型態分析-臺北市照護分析,台灣地理資訊學會年會暨學術研討會論文集,2005
[30] 林雍勝,岩石貫切破壞之圍壓與刀楔影響及其對應之聲射演化,碩士論文,國立台灣科技大學營建工程學系,2006
[31] 林雍勝,陳立憲,黃國忠,陳堯中,聲射法於類岩材料受側向圍壓下之貫切破壞探討,岩盤工程研討會論文集,2006
[32] 林鳳書,結合群聚計數之搜尋演算法於容錯系統之研究,碩士論文,中原大學機械工程學系,2003
[33] 金昆翰,開發同步化聲光非破壞檢測於類岩材料受雙刀式貫切破壞之研析,碩士論文,國立台北科技大學土木與防災工程學系,2008
[34] 潘麒全,可修正的二分群集法,碩士論文,中原大學資訊管理學系,2003
[35] 羅華強,類神經網路-MATLAB的應用,台北縣五股鄉:高立,2005,pp 8-2,8-48
[36] 鐘文杰,整合自組織映射圖神經網路與遺傳演算法為輔之K-Means於資料採礦之研究-以物流業為例,碩士論文,國立台北科技大學產系統工程與管理學系,2001
論文全文使用權限:同意授權於2015-02-05起公開