現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:公路逕流之非點源單位污染負荷研究 [以論文名稱查詢館藏系統]
論文英文名稱:A study of Nonpoint Source Pollution Unit Areal Loadings for Highway Runoff [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:98
出版年度:99
中文姓名:鄧宇傑
英文姓名:Yu-Chieh Teng
研究生學號:97428059
學位類別:碩士
語文別:中文
口試日期:2010-07-01
論文頁數:135
指導教授中文名:林鎮洋
口試委員中文名:康世芳;黃家勤
中文關鍵詞:非點源污染公路逕流暴雨採樣暴雨初期沖刷單位污染負荷
英文關鍵詞:Nonpoint Source PollutionHighway RunoffStormwater SamplingFirst FlushUnit Areal Loadings
論文中文摘要:  本研究決定量化不同交通量之公路污染量,首先,進行採樣點的評選,選定都市公路與郊區道路作為比較對象,另外,選擇一個熱點區域-加油站,進行暴雨初期採樣工作。本研究場址最終決定為台北市建國高架橋忠孝上至長安下路段(場址A),以及坪林行控中心前道路(場址B),熱點地區則為坪林加油站(場址C)。依照採樣工作計畫,完成暴雨採樣,當採樣結束後,依品保與品管流程於實驗室分析化驗各水質項目(SS、TP、NH3-N與COD),委外化驗(重金屬與油脂),為期10個月的暴雨採樣調查,由8筆化驗結果計算各研究區域之事件平均濃度,進而利用簡易法推估公路與熱點地區的單位污染負荷量與污染總量,作為國內本土化資料的依據。
  研究結果顯示:SS濃度變化與降雨強度、流量變化呈現相同趨勢。SS與NH3-N之尖峰濃度多發生在尖峰流量發生之前,因為流量迅速增加,污染物質迅速被沖出。NH3-N濃度隨著降雨強度增強而降低,因為污染量減少,流量增加的緣故。場址A之SS、TP與COD濃度約為場址B的2~2.5倍,而NH3-N高達5倍之多,因為高架橋交通量遠高於坪林行控中心道路,而氮來源來自汽車引擎燃燒過程中,空氣中的氮氣與氧氣於高溫下反應產生二氧化氮,易溶於水,溶於水後,以該形式的氮呈現。SS年污染量以坪林加油站產生的最高,營養鹽、COD及重金屬部分,則是建國高架橋產生的年污染量最高。國內公路之單位污染負荷量遠大於國內各土地利用型態,顯示每單位面積非點源污染產生量相當可觀,應加以重視。在不同降雨型態之降雨強度下,污染物的尖峰濃度是不一致的,與該場之降雨強度有關係。與國外案例比較,高架橋型態之SS濃度高於其他公路型態,與本研究結果相符。
論文英文摘要:  The present research aims to quantify the highway runoff pollution. The research site was placed at the section of Zhongxiao to Chang’an in Jianguo viaduct (Site A) and the roadway front of the Ping-Lin Expressway Management Station (Site B) and Ping-Lin gas station (Site C). Site A was located in Taipei city, and Site B and Site C were located in the upstream area of the Feitsui resevoir watershed. This study depends on stormwater sampling and the Unit Area Loadings.
  According to this research (from September, 2009 to June, 2010), the results indicate that the relation between suspended solids (SS) concentration and discharge is obvious in the three sites. The top concentration of SS and ammonia (NH3-N) happen before the top flow. Heavy rain would increase the runoff volume and dilute the concentration of NH3-N gradually. It was observed that SS、total phosphorus (TP) and chemical oxygen demend (COD) event mean concentrations (EMCs) of runoff from the Jianguo viaduct (Site A) were twice as much as suburban sites. During the storm, the EMCs of NH3-N were five times as much as the Site B. Because the vehicles engine working, it would make a lots of exhaust fumes. It is also the reason for causing nitrogen. The annual average daily traffic (AADT) of Site A is more than that of Site B, as a result the EMC of NH3-N is much higher than of Site B. The yearly quantity of SS produced by Pin-lin gas station is much higher than other two stations. However, the quantity of nutrients, COD and heavy mental materials contained in Site A are highest in three study sites. The unit area load of pollution measured at highway is much higher than it at other kinds of land uses in Taiwan. It shows that the high unit areal loading of nonpoint source of pollution is a serious problem facing Taiwan. After all, we must face it and solve it. In the different season rain type, the rain intensity will be different. The pollution concentration would be affected by the forward factor.
論文目次:中文摘要...................................................i
英文摘要.................................................iii
誌謝.......................................................v
目錄......................................................vi
表目錄....................................................ix
圖目錄....................................................xi
第一章 前言...............................................1
1.1 研究動機...............................................2
1.2 研究目的...............................................3
1.3 研究內容及流程.........................................3
第二章 文獻回顧...........................................6
2.1 點源、非點源污染.......................................6
2.2 公路污染物質...........................................7
2.2.1 重金屬...............................................9
2.2.2 油脂................................................10
2.2.3 懸浮固體............................................10
2.2.4 營養鹽..............................................11
2.2.5 相互關係之研究......................................13
2.3 暴雨初期沖刷..........................................14
2.4 公路逕流污染相關研究..................................15
2.5 公路單位污染負荷相關研究..............................21
2.6 加油站污染............................................23
第三章 研究場址介紹與採樣分析............................24
3.1 場址研選..............................................24
3.1.1 採樣地點之選定原則..................................28
3.1.2 採樣點的描述........................................29
3.2 研究區域背景概述......................................32
3.2.1 地形與土地利用......................................32
3.2.2 人口成長趨勢........................................33
3.2.3 產業經濟............................................35
3.2.4 監測資料............................................36
3.2.5 降雨特性............................................38
3.3 非點源污染採樣與分析..................................40
3.3.1 採樣之目的..........................................40
3.3.2 採樣計畫之擬定......................................41
3.3.3 採樣儀器選定........................................42
3.3.4 暴雨初期採樣條件....................................43
3.3.5 採樣頻率............................................45
3.3.6 實驗方法............................................47
3.4 流量計算..............................................49
3.5 單位污染負荷..........................................51
3.5.1 負荷公式之選擇......................................52
第四章 結果與討論........................................57
4.1 採樣結果分析..........................................57
4.2 暴雨與濃度之關係......................................59
4.3 EMC計算結果...........................................71
4.3.1 污染濃度分析........................................73
4.4 污染總量與單位污染負荷量比較..........................75
4.4.1 各場次污染總量推估與比較............................75
4.4.2 各土地利用類別之單位污染負荷量比較..................77
4.5 國內外公路平均濃度比較................................80
4.6 國內外公路單位污染負荷量比較..........................82
4.7 暴雨採樣時機分析與歸納................................84
第五章 結論與建議........................................85
5.1 結論..................................................85
5.2 建議..................................................87
參考文獻..................................................88
附錄 A 採樣工作計畫......................................95
附錄 B 品保與品管作業...................................105
附錄 C 流量計算結果.....................................110
附錄 D 各採樣點之EMC....................................116
附錄 E 各採樣點之重金屬濃度.............................122
附錄 F 建國高架橋皮爾森相關性分析與T檢定................130
論文參考文獻:【1】Barbosa, A. E. and Hvitved-Jacobsen, T. (1999). “Highway Runoff and Potential for Removal of Heavy Metals in an Infiltration Pond in Portugal.” Science of the Total Environment, 235(1-3), 151-159.
【2】Barrett, M. E., Malina, J. F., Charbeneau, R. J. and Ward, G. H. (1995). “Characterization of highway runoff in the Astin, Texas area.” CRWR 263, Center for Research in Water Resources, University of Texas at Austin, Austin, TX.
【3】Berman, L., Hartline, C., Ryan, N., and Thorne, J. (1991). “Urban Runoff : Water Quality Solutions.” American Public Works Association, Special Report, No.61.
【4】Brezonik, P. L., and Stadelmann, T. H. (2002). “Analysis and predictive models of stormwater runoff volumes, loads, and pollutant concentrations from watersheds in the Twin Cities metropolitan area, Minnesota, USA.” Water Research, 36(7), 1743-1757.
【5】Chiu, T. W., Mar, B. W., and Horner, R. R. (1982). ”Pollutant loading model for highway runoff.” Journal Environmental Engineering, 108(EE6), 1193-1210.
【6】City of Seattle (1989). “Water Quality Best Management Practices Manual of Commercial and Industrial Business.” Municipal Government of Seattle, WA.
【7】Deletic, A. B. and Maksimovic, C. T. (1998). “Evaluation of Water Quality Factors in Storm Runoff from Paved Areas.” Journal of Environmental Engineering, 124(9), 869-879.

【8】Drapper, D., Tomlinson, R., and Williams, P. (2000). “Pollutant Concentrations in Road Runoff: Southeast Queensland Case Study.” Journal of Environment Engineering, ASCE, 126(4), 313-320.
【9】Driscoll, E. D., Shelly, P. E., and Strecker, E. W. (1990). “Pollutant loadings and impacts from stormwater runoff, Vol. III: Analytical investigation and research report.” Report FHWA-RD-88-008, Federal Highway Administration, Washington, D.C.
【10】Eriksson, E., Baun, A., Scholes, L., Ledin, A., Ahlman, S., Revitt, M., Noutsopoulos, C. and Mikkelsen, P. S. (2007). “Selected stormwater priority pollutants – a European perspective.” Science of the Total Environment, 383(1-3), 41–51.
【11】Flint, K. R. and Davis, A. P. (2007). “Pollutant Mass Flushing Characterization of Highway Stormwater Runoff from an Ultra-Urban Area.” Joural of Environmental Engineering, 133(6), 616-626.
【12】Geist, J. K. (2003). “Final Comment Report : Humboldt Bay and Watershed Fecal Coliform Study.” Humboldt Bay Shellfish Advisory Committee, Arcata, California.
【13】Gupta, M. K., Agnew, R. W., Gruber, D., and Kreutzberger, W. (1981). “Constituents of highway runoff. Vol. IV: Characteristics of runoff from operating highways.” Report FHWD-RD-81-045, Federal Highway Administration, Washington, D.C.
【14】Harrison, R. M., and Wilson, S. J. (1985). “The chemical composition of highway drainage waters: I: Major ions and selected trace metals.” Science of the Total Environment, 43(1-2), 63-77.
【15】Harrison, R. M., and Wilson, S. J. (1985). “The chemical composition of highway drainage waters. II. Chemical associations of metals in the suspended sediment.” Science of the Total Environment, 43(1-2), 79-87.
【16】Herr, J. L., and Harper, H. H. (1988). “Removal of Gross Pollutants From Stormwater Runoff Using Liquid/Solid Separation Structures.” Environmental Research & Design, Inc., Orlando, Florida.
【17】Hewitt, C. N., and Rashed, M. B. (1992). “Removal rates of selected pollutants in the runoff waters from a major rural highway.” Water Resolution, 26(3), 311-319.
【18】Hope, D., Naegeli, M. W., Chan, A. H., and Grimm, N. B. (2004). “Nutrients on asphalt parking surfaces in an urban environment.” Water, Air, Soil Pollutant: Focus, 4(2-3), 371-390.
【19】Kayhanian, M., and Borroum, S. (2000). “Regional highway stormwater runoff characteristics in California.” Proceedings of California Water Environment Association, 72nd Annual Conference, Sacramento, California.
【20】Kayhanian, M., Singh, A., Suverkropp, C., and Borroum, S. (2003). “Impact of annual average daily traffic on highway runoff pollutant concentrations.” Journal of Environmental Engineering, 129(11), 975-990.
【21】Kayhanian, M., Stenstom, M. K., Lau, S. L., Lee, H. H., Ma, J. S., Ha, H., Kim, L. H. and Khan, S. (2001). “First Flush Stormwater Runoff from Highway.” American Society of Civil Engineers (ASCE) World Water and Environmental Resources Congress 2001, Orlando, Florida, May.
【22】Kayhanian, M., Surverkropp, C., Ruby, A. and Tsay, K. (2007). “Characterization and prediction of highway runoff constituent event mean concentration.” Journal of Environmental Management, 85(2), 279-295.
【23】Kim, L. H., Kayhanian, M., Zoh, K. D. and Stenstrom, M. K. (2005). “Modeling of highway stormwater runoff.” Science of the Total Environment, 348(1-3), 1-18.
【24】Kim, L. H., Ko, S. O., Jeong, S. and Yoon, J. (2007). “Characteristics of washed-off pollutants and dynamic EMCs in parking lots and bridges during a storm.” Science of the Total Environment, 376(1-3), 178-184.
【25】Passeport, E. and Hunt, W. F. (2009). “Asphalt Parking Lot Runoff Nutrient Characterization for Eight Sites in North Carolina, USA.” Journal of Hydrologic Engineering, 14(4), 352-361.
【26】Rushton, B. T. (2001). “Low-impact parking lot design reduces runoff and pollutant loads.” Journal of Water Resources Planning and Management, 127(3), 172-179.
【27】Sansalone, J. J., and Buchberger, S. G. (1997).”Partitioning and first flush of metals in urban roadway storm water.” Journal of Environmental Engineering, 123(2), 134-143.
【28】Schueler, T. (1987). “Controlling Urban Runoff: A Practical Manual for Planning and Designing Urban Best Management Practices.” Metropolitan Washington Council of Governments, Washington, DC.
【29】Stotz, G. (1987). “Investigation of the properties of the surface water runoff from federal highways in the FRG.” Science of the Total Environment, 59, 329-337.
【30】USEPA (1995). “Controlling nonpoint source runoff pollution from roads, highways and bridges.” Report EPA-841-F-008a, U.S.EPA, USA.
【31】USEPA (2003). “Chapter 7 : Load Estimation Techniques.” National Management Measures to Control Nonpoint Pollution from Agriculture, Washington, DC.
【32】Wanielista, M. P. and Yousef, Y. A. (1993). Stormwater Management, John Wiley & Sons, New York, 579 pages.
【33】Woodward-Clyde Consultants (1989). “Synoptic Analysis of Selected Rainfall Gages throughout the United States.” Report to EPA, Woodward-Clyde Consultants, Oakland, California.
【34】Wu, J. S., Allan, C. J., Saunders, W. L., and Evett, J. B. (1998). “Characterization and Pollutant Loading Estimation for Highway Runoff.” Journal of Environmental Engineering, 124(7), 584-592.
【35】王如意與易任(2005),應用水文學(新編上冊),國立編譯館出版,臺北市。
【36】台北市大安區公所網站(2010),地理環境, http://www.dado.taipei.gov.tw/ct.asp?xItem=29001&CtNode=4019&mp=124021
【37】李光敦(2010),第七章集水區降雨逕流演算,國立臺灣海洋大學河海工程學系水文學課程講義,http://ind.ntou.edu.tw/~ktlee/hydrology/CH.7.pdf
【38】李晉豪(2001),茶園非點源污染負荷之調查與推估,碩士論文,國立成功大學環境工程研究所,臺南。
【39】京華工程顧問有限公司(2009),石門水庫集水區水質水量影響因子暨集水區劃設績效指標值建立之研究,經濟部水利署委託。
【40】林浩潭、陳素文、沈季蓉與翁愫慎(2005),重金屬污染土壤以本土植物復育之探討,植物保護學會會刊,第47卷,第3期,第241-250頁。
【41】林鎮洋與余嘯雷(2007),非點源污染削減技術試驗計畫-MCTT多槽處理技術,行政院環境保護署委託。
【42】施禹州(2007),河川污染負荷之推估-以北勢溪為例,碩士論文,臺灣大學土木工程研究所,臺北。
【43】陳彥甫(2003),茶園及林地非點源單位污染負荷之研究,碩士論文,國立臺北科技大學環境規劃與管理研究所,臺北。
【44】游以德、林鎮洋與張尊國(2009),翡翠水庫上游集水區茶園非點源污染最佳管理作業,經濟部水利署台北水源特定區管理局。
【45】黃家勤(2002),公路逕流污染調查與控制方法研究,行政院國家科學委員會專題研究計畫成果報告,NSC91-2211-E-214-003。
【46】楊懿如(2007),蘇花高速公路與生態,生態台灣季刊,第十六期,第12-13頁。
【47】溫清光(2000),施工活動最佳管理作業設置規範,行政院環境保護署執行。
【48】溫清光與余嘯雷(1999),遊憩活動非點源污染最佳管理作業規範研究,行政院環保署委託。
【49】溫清光與張智華(1998),台灣非點源污染管理及控制現況-(一)社區、工業區、遊憩區、營建工地,中美非點源污染控制管理與技術合作研討會,行政院環保署、財團法人成大研究發展基金會、國立成功大學環境工程學系主辦。
【50】盧至人與邱應志譯(2000),非點源污染及市區雨水管理,國立編譯館出版。
【51】盧彥勳(2009),大氣中微粒污染與重金屬成分之模擬與分析,碩士論文,東海大學環境科學與工程研究所,臺中。
論文全文使用權限:同意授權於2011-08-03起公開