現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:稻殼灰運用於混凝土之性質探討 [以論文名稱查詢館藏系統]
論文英文名稱:The study of Rice Husk Ash Application in concrete [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:98
出版年度:99
中文姓名:吳韋陞
英文姓名:Wei-Sheng Wu
研究生學號:97428057
學位類別:碩士
語文別:中文
口試日期:2010-06-29
論文頁數:220
指導教授中文名:林利國
指導教授英文名:Lee-Kuo Lin 林利國
口試委員中文名:黃兆龍;鄭大偉;蘇南
口試委員英文名:Chao-Lung Hwang;Ta-Wei Cheng;Nan Su
中文關鍵詞:卜作嵐材料稻殼灰孔窩結構節能減碳
英文關鍵詞:Pozzolanic MaterialRice Husk AshPorous Cellular StructureEnergy Saving & Carbon Reduction
論文中文摘要:近些年來政府持續推動永續工程、節能減碳等相關議題,無疑就是希望能達到工程與環境生態相互平衡的願景;其中以營建產業最常使用的水泥最為耗能,平均每使用1公噸的水泥將會排放0.85公噸的二氧化碳,故本研究將運用廢棄物稻殼灰,當作卜作嵐材料(Pozzolanic Material),取代部分水泥製成高性能混凝土。
本研究乃針對稻殼灰取代水泥添加於混凝土中進行性質探討,稻殼灰類型為廢棄物稻殼灰與使用稻殼進行高溫燒結(燒灰溫度為500℃、700℃與900℃),水膠比選定W/B=0.24、0.3與0.4,取代水泥量為0%、5%、10%、20%與40%,並探討與分析其新拌、硬固、耐久與微觀等性質。稻殼灰於顯微鏡底下型態為孔窩結構狀,有別於其他卜作嵐材料,高保水、耐腐蝕與添加後產生緩凝皆為此之特性,經不同溫度燃燒形成之稻殼灰其二氧化矽含量皆達90%,此成分與水泥水化物氫氧化鈣結合形成之C-S-H膠體將填塞微孔隙,並有效提升混凝土水密性與抗壓強度;本研究發現研磨過後之稻殼灰因粒徑小、比表面積大與水泥水化反應良好,將有助於提升混凝土之各項性質;從X-Ray圖得知900℃稻殼灰結晶形態最為完全,將不利於卜作嵐反應;本研究建議最佳燒灰溫度為500℃。
論文英文摘要:In recent years the government continued to promote the sustainable engineering, energy saving and carbon reduction and other related issues, no doubt wish to achieve a balance between engineering and ecology of vision; which the construction industry, cement industry, the most frequently used in energy consumption, using an average 0.85 tonnes of cement will be tonnes of carbon dioxide emissions, this study will use waste rice husk ash as a pozzolanic material, to replace part of cement made of high performance concrete.
This study presents a research on blended concrete containing waste rice husk ash (RHA), in which residual RHA from electrical furnace in Vietnam and RHA produced by controlled incineration at 500℃, 700℃ and 900℃. Ordinary Portland cement is partially replaced with RHA at the dosages of 0%, 5%, 10%, 20% and 40% by weight of cement. The water to binder is kept at 0.24, 0.3 and 0.4 and the slump of concrete is maintained at 50-180 mm with the aid of superplasticizer. The properties of fresh and harden blended concrete were determined.
Test results showed that to producing useful rice husk ash, the rice husk should be burnt beyond 500℃. RHA will be change from amorphous forms to crystalline form of silica at 800℃. Incorporation of RHA in concrete resulted in increased water demand. Addition of waste ashes was related to a decrease in compressive strength and increase in water absorption. The pozzolanic reactivity of waste RHA improved when its particle size decreased. Increasing RHA fineness would enhance the strength of blended concrete. The pozzolanic reactivity of the amorphous ash (500℃ RHA,700℃ RHA) was higher than those found for crystalline ash, demonstrating the important effect of the crystallization degree when silicon dioxide reacts with portlandite.
論文目次:摘 要 I
ABSTRACT II
致 謝 IV
目 錄 VI
表目錄 X
圖目錄 XIII
第一章緒論 1
1.1研究動機 1
1.2研究目的與範圍 3
1.2.1研究目的 3
1.2.2研究範圍 4
1.3研究方法與流程 4
第二章 文獻回顧 6
2.1農業廢棄物定義 6
2.2農業廢棄物稻殼簡介 6
2.2.1農業廢棄物稻殼之數量 7
2.3稻殼再利用 8
2.3.1燃料 8
2.3.2 半導體工業原料 8
2.3.3炭化物及乾餾液 8
2.3.4堆肥與廄肥 9
2.3.5生物可分解資材 9
2.4稻殼灰之基本特質 10
2.4.1稻殼灰之物理性質 11
2.4.2稻殼灰之化學性質 12
2.4.3稻殼灰之微觀性質 13
2.5卜作嵐材料之簡介、性質與應用 15
2.5.1卜作嵐的定義及種類 16
2.5.2卜作嵐對混凝土作用及影響 18
2.5.3不同卜作嵐材料的化學成分 19
2.6提昇卜作嵐活性之技術 21
2.6.1鹼活性劑 22
2.6.2硫酸鹽活化劑 23
第三章 試驗計畫 25
3.1試驗計畫 25
3.2試驗材料 27
3.2.1水泥 27
3.2.2稻殼灰 28
3.2.3粗、細粒料 30
3.2.4強塑劑 31
3.2.5拌和水 31
3.3試驗變數與項目 32
3.3.1試驗變數 32
3.3.2 ACI混凝土試驗項目 37
3.4 混凝土配比設計 41
3.5試驗方法及設備 48
3.5.1材料基本試驗 48
3.5.2ACI混凝土之新拌性質試驗 56
3.5.3混凝土之硬固性質試驗 60
3.5.4 ACI混凝土之耐久性質試驗 63
3.5.5混凝土之微觀性質試驗 67
第四章 研究討論與分析 68
4.1符號定義與水膠比修正說明 68
4.1.1符號定義 68
4.1.2水膠比修正說明 69
4.2稻殼灰之物理性質分析 70
4.3不同溫度稻殼灰性質之比較 73
4.3.1 DTA與TGA 73
4.3.2 X光射線螢光分析(XRF) 74
4.3.3 X光射線繞射(XRD) 76
4.3.4顯微結構 77
4.3.5比重 80
4.3.6卜作嵐活性指數 81
4.3.7水化熱 83
4.4混凝土新拌性質 85
4.4.1坍度與坍流度 85
4.4.2單位重 91
4.5混凝土硬固性質 96
4.5.1抗壓強度 96
4.5.2長度變化量 109
4.5.3超音波波速 118
4.6混凝土耐久性質 130
4.6.1表面電阻 130
4.6.2吸水率 143
4.6.3硫酸鹽侵蝕 155
4.6.4氯離子電滲 164
4.7混凝土微觀性質 170
第五章 稻殼灰混凝土之經濟性 183
5.1水泥強度效益 184
5.2成本效益分析 197
5.3二氧化碳減量效益 206
5.4碳市場價格 210
第六章 結論與建議 214
6.1結論 214
6.2建議 217
參考文獻 218
論文參考文獻:[1] P. K. Metha and D. Pirtz, “Use of Rice Husk Ash to reduce temperature in High Strength Mass Concrete,” ACI Journal, 1978, pp.60-63.
[2] D.J. Cook and A.P. Suwanvitay, “Prpoerties and Behaviour of Lime-Rice Husk Ash Cements,” Fly Ash,Silica Fume,Slag and Other Mineral By-Produts in Concrete, ACI SP-79, 1981, pp.831-845.
[3] D.F. Houston, “Rice Hulls,” Rice Chemical and Technology, 1992, pp.301-352.
[4] M.N. AI-Khalaf, “Development of microstructure & other properties in Rice Husk Ash-OPC systems,” 1984.
[5] D.J. Cook, “Development of microstructure & other properties in Rice Husk Ash-OPC systems,” The ninth Australasian conference on the mechanics of structures and material 29-31, University of Sydney, School of Civil and Mining Engineering, Sydney, 1984, pp. 355-360.
[6] Deepa G. Nair, Alex Fraaij, Adri A.K. Klaassen and Arno P.M. Kentgens, “A structural investigation relating A structural investigation relating,” Cement and Concrete Research38, 2008, PP. 861-869.
[7] C.L. Hwang and D.S. Wu, “Properties of cement paste containing Rice Husk Ash,” ACI, Detroit, Trondheim, Norway, 1989, pp.733-765.
[8] E.C. Beagle, “Rice-Husk Conversion to Energy,” FAO Agrecultureal Services Bulletin 37, Rome, Italy, 1978.
[9] R. Siddique, “Waste Material and By-Products in Concrete,” 2008, pp.235-264.
[10] R. Jauberthie, F. Rendell, S. Tamba and I. Cisse, “Original of the pozzolanic effect of rice husk ash,” Construction and Building Material 14, 2000, pp.419-423.
[11] M.N. AI-Khalaf and H.A. Yousift, “Use of rice husk ash in concrete,” 1984.
[12] M.S. Ismail and A.M. Waliuddin, “Effect of rice husk ash on high strength concrete,” Construction and Building Material, 1996, pp.521-526.
[13] M.H. Zhang and V.M. Malhotra, “High-Performance concrete incorporating rice husk ash as supplementary cementing material,” ACI Material Jounal 93(6), 1996, pp. 629-636.
[14] M.H. Zhang, R. Lastra and V.M. Malhotra, “Rice-husk-ash paste and concrete: Some aspects of hydration and the microstructure of the interfacial zone between the aggregate and paste,” Cement and Concrete Research, vol26, no 6, 1996, page 963.
[15] M. Rozainee, S.P. Ngo, A.A. Salema, K.G. Tan, M. Ariffin and Z.N. Zainura, “Effect of fluidizing velocity on the combustion of rice husk in a bench-scale fluidised bed combustor fluidised bed combustor,” Bioresource Technology 99, 2008, pp. 703-713.
[16] P. Chindaprasirt, P. Kanchanda, A. Sathonsaowaphak and H.T. Cao, “Sulfate resistance of blended cements containing fly ash and rice husk ash,” Construction and Building Materials 21, 2007, pp.1356-1361.
[17] M. Nehdi and J. Duquette, “Performance of Rice Husk Ash produced using a new technology as a mineral admixture in concrete,” Cement and Concrete Research, 2003, pp.203-210.
[18] K.G. Mansaray and A.E. Ghaly, “Physical and thermochemical properties of rice husk,” Energy Source, 1997, pp.989-1004.
[19] K. Ganesan, K. Rajagopal K and Thangavel, “Rice Husk Ash blended cement: Assessment of optimal level of replacement for strength and permeability properties of concrete,” Construction and Building Material 22, 2008, pp.1675-1683.
[20] D.D. Bui, J. Hu and P. Stroeven, “Particle size effect on the strength of RHA blended gap-graded Portland cement concrete, ” Cement and Concrete Research 27, 2005, pp.357-366.
[21] Gemma Rodríguez de Sensale, “Strength development of concrete with RHA,” Cement & Concrete Composites 28, 2006, pp.158-160.
[22] A.L.G. Gastaldini, G.C. Isaia, N.S. Gomes and J.E.K. Sperb, “Chloride penetration and carbonation in concrete with rice husk ash and chemical activators,” Cement & Concrete Composites 29, 2007, pp.176-180.
[23] Gemma Rodríguez de Sensale, Antonio B. Ribeiro and Arlindo Goncalves, “Effect of RHA autogenous shrinkage of Portland cement pastes,” Cement and Concrete Research, 2008.
[24] A. Salas, S. Delvasto, Ruby Mejía de Gutierrez and D. Lange, “Comparsion of two processes for treating RHA for use in high performance concrete, ” Cement and Concrete Research 39, 2009, pp.773-778.
[25] S. Rukzon, P. Chindaprasirt and R. Mahachai, “Effect of grinding on chemical & physical properties of RHA,” Metallurgy and Materials 16, 2009. page 242.
[26] A.L.G. Gastaldini, G.C. Isaia, T.F. Hoppe, F. Missau and A.P. Saciloto, “Influence of the rice husk ash on the electrical resistivity of concrete: A technical and economic feasibility study,” Construction and Building Material 23, 2009, pp. 3411-3419.
[27] C. Shi and R. L. Day, “Acceleration of the reactivity of fly ash by chemical activation,” Cement and Concrete Research 25 (1), 1995, pp.15-21.
[28] C. Shi and R. L. Day, “Comparison of different methods for enhancing reactivity of pozzolans,” Cement and Concrete Research 31(5), 2001, pp.813-818.
[29] C. Shi and R. L. Day, “A calorimetric study of early hydration of alkali-slag cement,” Cement and Concrete Research 25 (6), 1995, pp. 1333-1346.
[30] C. Shi & R. L. Day, “Some factors affecting early hydration of alkali-slag cement,” Cement and Concrete Research 26 (3), 1996,pp. 439-447.
[31] J. Paya, J. Monzo, M. V. Borrachero and E. Peris-Mora, “Mechnical treatment of fly ashes part I:Physico-chemical characterization of ground fly ash,” Cement and Concrete Research 25 (7), 1995,pp.1469-1479.
[32] V. Saraswathy and Ha-Won Song, “Corrosion performance of rice husk ash blendedconcrete,” Construction and Building Material 21, 2007, pp.1179-1184.
[33] P. Chindaprasirt and S. Rukzon, “Strength, porosity and corrosion resistance of ternary blend Portland cement, rice husk ash and fly ash mortar,” Construction and Building Material 22, 2008, pp.1601-1606.
[34] 蔡明策,稻殼灰分和稻殼灰分-氧化鋁擔載鎳觸媒特性與反應性之研究,碩士論文,國立中央大學,桃園,2001。
[35] 林利國,稻殼灰性質與在混凝土材料上之利用,碩士論文,國立台灣工業技術學院,臺北,1989。
[36] 蕭遠智,鹼性化電弧爐還原碴之水化反應特性,碩士論文,國立中央大學,桃園,2002。
[37] 楊鑫城,汎用混凝土耐久性之研究,碩士論文,國立成功大學,台南,2003。
[38] 許純雅,高矽質稻殼灰對水泥性能之影響,碩士論文,國立高雄應用科技大學,高雄,2005。
[39] 黃兆龍,混凝土性質與行為,臺北:詹氏書局,2002。 
[40] 黃兆龍,高性能混凝土理論與實務,臺北:詹氏書局,2003。
[41] 黃兆龍,卜作嵐混凝土手冊,臺北:科技圖書,2007。
[42] 吳東昇,稻殼灰物化性分析及最適燒結狀況對水泥水化特性之影響,臺北:崇德書局,1997,第47-48頁。
[43] 王松永,「木質材料對二氧化碳固存的環境效應」,木質建築雜誌,第5期,2001,第157-178頁。
[44] 劉正川,蘇欣宏,王亮力,「氧化矽與氧化鋯應用於混凝土強度之研究」,台北科技大學學報,第41期,2006,第115-122頁。
[45] 倪禮豐,稻殼再利用技術,「花蓮區農業專訊」,第61 期,2007,第19-20頁。
[46] 行政院農業委員會農糧署,http://www.afa.gov.tw/index.asp,2010。
[47] 聯合國糧食及農業組織,http://www.fao.org/es/ess/top/country.html,2010。
[48] 清潔發展機制,http://cdm.unfccc.int/index.html,2010。
論文全文使用權限:不同意授權