現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:以有限元素法分析模擬RC開口剪力牆之裂縫分佈與演化過程 [以論文名稱查詢館藏系統]
論文英文名稱:The Analysis of The Cracking Distribution and Evolution of RC Walls with Openings Using FEM [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:98
出版年度:99
中文姓名:簡士倫
英文姓名:Shih-Lun Chien
研究生學號:97428016
學位類別:碩士
語文別:中文
口試日期:2010-07-23
論文頁數:186
指導教授中文名:李有豐
口試委員中文名:徐增興;陳清泉;黃世建
中文關鍵詞:側推分析有限元素法開口剪力牆裂縫演化
英文關鍵詞:Shear Walls with OpeningConcrete CrackPushover Analysis
論文中文摘要:台灣由於地震頻繁,老舊建築或校舍之耐震能力已不合於新訂的耐震規範。業界中使用最多的補強方式為增設RC剪力牆,但往往為了通風或採光需對RC牆體開口。在學術與業界上對於RC開口混凝土牆體的認識,需要透過實驗得之,但實驗需耗費大量人力與物力,對於現行政府節能減碳政策上有所背道而馳。故本研究期透過電腦輔助工程分析(Computer-Aided Engineering, CAE)的方式,藉由分析收集文獻中構架內加半牆、構架內加高牆、構架含翼牆與開門含牆構架之RC開口剪力牆構架試驗共八座,以探討開口牆體裂縫發展趨勢。於有限元素軟體(ANSYS)進行實尺寸開口RC剪力牆分析,在軟體中建立開口RC剪力牆實體尺寸的有限元素模型進行非線性側推分析,包含數值模型、元素模型與材料模型。數值模型為建立實體尺寸實驗模型;元素模型中RC剪力牆之混凝土使用支援混凝土三維的體積元素模擬,RC剪力牆鋼筋使用三維指定斷面的桁架元素模擬;材料模型為多線性等向硬化、Von Mises降伏準則、Willam-Warnke五參數混凝土破壞準則等材料塑性力學理論。將分析結果與實驗比對,分析得裂縫位置、裂縫方向與演化跟實驗結果類似,且力與位移曲線趨勢與實驗結果相似。本研究藉由有限元素法並配合塑性力學理論對RC開口牆體裂縫發展分佈進行模擬,得到裂縫分佈與演化趨勢和力位移曲線,能提供學者或工程師對於RC開口牆體之裂縫發展與力位移曲線之參考依據。
論文英文摘要:The seismic capacity of existing buildings fails to meet the new seismic code in Taiwan. To increase the seismic capacity, the most common solution for existing buildings is to build additional RC shear walls. However, opens on the shear wall are required for light and air. The searching or engineering get the information of the seismic capacity of the RC shear wall with opening by experiment which always spend a lot of money, time and person. In this thesis, we use the method Computer-Aided Engineering (CAE) to investigate the crack distribution and evolution by analysis the six specimens which include framed shear walls with opening, high-, low-rise, door, and window framed shear walls. In the finite element software, ANSYS, build the real size RC wall with the six specimens called numerical model, and use the 3-D solid element to simulate concrete and 3-D spear element to simulate steel rebar called element model, then use the plasticity theorem which included the multilinear isotropic hardening using Von-Mises plasticity and Willian-Warnke five-parameter model called material model. Based on the above three models, the finite element model was used to perform the nonlinear pushover analysis. It is similarity that compares the analytical results which includes the crack positions, distributions and evolutions with experimental result. In this thesis, the cracking distributions and the evolutions of RC wall with opening were simulated by finite element method and plasticity theorems, and these results can provide engineers or researchers the information of the crack distributions and evolutions of the RC wall with opening.
論文目次:中文摘要 i
英文摘要 ii
誌 謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1研究動機與目的 1
1.2 文獻回顧 2
1.2.1 國外相關研究 2
1.2.2 國內相關研究 4
1.3研究方法與流程規劃 4
第二章 RC牆體材料之塑性力學 6
2.1 鋼筋之應力-應變關係 6
2.2混凝土受力行為 8
2.2.1 混凝土單軸受力行為 8
2.2.2 混凝土雙軸受力行為 9
2.2.3 混凝土三軸受力行為 11
2.3 塑性力學 19
2.3.1 降伏面 19
2.3.2 硬化法則 20
2.3.3 流動法則 22
2.3.4 破壞準則 22
2.4 混凝土破壞準則 24
2.5 有限元素基本理論 31
第三章 RC開口牆體之有限元素分析概述 34
3.1 分析元素介紹 34
3.1.1 線元素 34
3.1.2 固體元素 36
3.2 非線性材料性質的模擬 38
3.2.1 材料多線性 38
3.2.2 模擬混凝土開裂與壓碎破壞設定 39
3.3 非線性有限元素分析 41
第四章 開口RC剪力牆之有限元素分析 44
4.1 試體概述 44
4.2 LFWL 50
4.2.1 有限元素模型建立與線彈性收斂性分析 50
4.2.2 材料降伏準則分析 53
4.2.3 裂縫演化討論 56
4.2.4 裂縫演化比較 66
4.3 LFWH 67
4.3.1 有限元素模型建立與線彈性收斂性分析 68
4.3.2 材料降伏準則分析 70
4.3.3 裂縫演化討論 73
4.3.4 裂縫演化比較 82
4.4 HFWL 83
4.4.1 有限元素模型建立與線彈性收斂性分析 84
4.4.2 材料降伏準則分析 86
4.4.3 裂縫演化討論 89
4.4.4 裂縫演化比較 101
4.5 HFWH 102
4.5.1 有限元素模型建立與線彈性收斂性分析 102
4.5.2 材料降伏準則分析 105
4.5.3 裂縫演化討論 108
4.5.4 裂縫演化比較 119
4.6 WFW 120
4.6.1 有限元素模型建立與線彈性收斂性分析 120
4.6.2 材料降伏準則分析 123
4.6.3 裂縫演化討論 126
4.6.4 裂縫演化比較 136
4.7 DFW 137
4.7.1 有限元素模型建立與線彈性收斂性分析 138
4.7.2 材料降伏準則分析 140
4.7.3 裂縫演化討論 143
4.7.4 裂縫演化比較 154
4.8 CFW 155
4.8.1 有限元素模型建立與線彈性收斂性分析 155
4.8.2 材料降伏準則分析 158
4.8.3 裂縫演化討論 161
4.9 模擬試體結果比較 170
4.9.1構架含矮牆裂縫分析比較 170
4.9.2構架含高牆裂縫分析比較 172
4.9.3使用低混凝土強度牆體裂縫分析比較 174
4.9.4使用低混凝土強度牆體裂縫分析比較 176
第五章 結論 179
5.1 結論 179
5.2 建議 180
參考文獻 181
論文參考文獻:[1] Anil, Ö. and Altin, S. (2007). “An Experimental Study on Reinforced Concrete Partially Infilled Frames,” Engineering Structures, Vol. 29, No. 3, pp. 449-460.
[2] W. F. Chen and A. F. Saleeb (1982). Constitutive Equations for Engineering Materials, John Wiley & Sons, New York.
[3] Dhanasekar, M. and Haider, W. (2008). “Explicit Finite Element Analysis of Lightly Reinforced Masonry Shear Walls,” Computers and Structures, Vol. 86, No. 1-2, pp. 15-26.
[4] Hidalgo, P. A., Jordan, R. M. and Martinez, M. P. (2002). “An Analytical Model to Predict the Inelastic Seismic Behavior of Shear-Wall, Reinforced Concrete Structures,” Engineering Structures, Vol. 24, No. 1, pp. 85-98.
[5] Hsu, T. T. C. (1998). “Unified Approach to Shear Analysis and Design,” Cement and Concrete Composites, Vol. 20, No. 6, pp. 419-435.
[6] Hughes, D. P., and Chapman, G. P. (1966). “The Complete Stress-Strain Curve for Concrete in Direct Tension,” Bulletin RILEM, No. 30, pp. 95-97.
[7] Kent, D. C., and Park, R. (1971). “Flexural Memberes with Confined Concrete,” Journal of the Structural Division, ASCE, Vol. 97, No. 7, pp. 1969-1990.
[8] Kupfer, H., Hilsdorf, H. K., and Rusch, H. (1969). “Behavior of Concrete Under Biaxial Stresses,” Journal of the American Concrete Institute, Vol. 66, No. 8, pp. 656-666.
[9] Lestuzzi, P. and Bachmann, H. (2007). “Displacement Ductility and Energy Assessment from Shaking Table Tests on RC Structural Walls,” Engineering Structures, Vol. 29, No. 8, pp. 1708-1721.
[10] Mander, J. B., Priestley, M. J. N. and Park, R. (1988). “Observed Stress-strain Behavior of Confined Concrete,” Journal of Structural Engineering, ASCE, Vol. 97, No. 7, pp. 1969-1990.
[11] Mander, J. B., Priestley, M. J. N. and Park, R. (1988). “Theoretical Stress-strain Model for Confined Concrete,” Journal of Structural Engineering, ASCE, Vol. 114, No. 8, pp. 1804-1826.
[12] Nelissen, L. J. M. (1972) “Biaxial Testing of Normal Concrete,” HERON, Vol. 18, No. 1.
[13] Palermo, D. and Vecchio, F. J. (2004). “Compression field modeling of reinforced concrete subjected to reversed loaded: verification,” ACI Structural Journal, Vol. 101, No. 1, pp. 155-164.
[14] Palermo, D. and Vecchio, F. J. (2007). “Simulation of Cyclically Loaded Concrete Structures Based on the Finite-Element Method,” Journal of Structural Engineering, Vol. 133, No. 5, pp. 728-738.
[15] Pilakoutas, K. and Elnashai, A. (1995). “Cyclic Behavior of Reinforced Concrete Cantilever Walls, Part I: Experimental Results,” ACI Structural Journal, Vol. 92, No. 3, pp. 271-281.
[16] Popovics, S. (1973). “A Numerical Approach to the Complete Stress-Strain Curves for Concrete,” Cement and Concrete Research, Vol. 3, No. 5, pp. 583-599.
[17] Salonikios, T. N. (2002). “Shear Strength and Deformation Patterns of R/C Walls with Aspect Ratio 1.0 and 1.5 Designed to Eurocode 8 (EC8),” Engineering Structures, Vol. 24, No. 1, pp. 39-49.
[18] Shaingchin, S., Lukkunaprasit, P. and Wood, S. L. (2007). “Influence of Diagonal Web Reinforcement on Cyclic Behavior of Structural Walls,” Engineering Structures, Vol. 29, No. 4, pp. 498-510.
[19] Su, R. K. L. and Wong, S. M. (2007). “Seismic Behaviour of Slender Reinforced Concrete Shear Walls Under High Axial Load Ratio,” Engineering Structures, Vol. 29, No. 8, pp. 1957-1965.
[20] Tasnimi, A. A. (2000). “Strength and Deformation of Mid-Rise Shear Walls under Load Reversal,” Engineering Structures, Vol. 22, No. 4, pp. 311-322.
[21] Umeki, K., Kitada, Y., Nishikawa, T., Maekawa, K. and Yamada, M. (2003). “Shear Transfer Constitutive Model for Pre-Cracked RC Plate Subjected to Combined Axial and Shear Stress,” Nuclear Engineering and Design, Vol. 220, No. 2, pp. 105-118.
[22] Willam K. J., and Warnke, E. P. (1974). “Constitutive Models for the Triaxial Behavior of Concrete,” International Association of Bridge and Structural Engineers Seminar on Concrete Structures Subjected to Triaxial Stresses, Paper III-1, Bergamo, Italy, pp.1-30.
[23] Wang, T. and Hsu, T. T. C. (2001). “Nonlinear Finite Element Analysis of Concrete Structures Using New Constitutive Models,” Computers and Structures, Vol. 79, No. 32, pp. 2781-2791.
[24] Anderson, P. (2008). “Concentration of plastic strains in steel liners due to concrete cracks in the containment wall,” International Journal of Pressure Vessels and Piping, Vol. 85, No. 10, pp. 711-719.
[25] Králik, J. and J. Králik Jr (2009). “Seismic analysis of reinforced concrete frame-wall systems considering ductility effects in accordance to Eurocode,” Engineering Structures, Vol. 31, No. 12, pp. 2865-2872.
[26] Hutchinson, T. C., T. Wang (2009). “Evaluation of crack spacing in reinforced concrete shear walls,” Journal of Structural Engineering, Vol. 135, No. 5, pp. 499-508.
[27] Nakamura, N., N. Tsunashima, et al. (2009). “Analytical study on energy consumption and damage to cylindrical and I-shaped reinforced concrete shear walls subjected to cyclic loading,” Engineering Structures, Vol. 31, No. 4, pp. 999-1009.
[28] Werasak, R. and M. Jing (2009), “Analysis Modelling of Seismic Behaviour of Lightweight Concrete Shear Walls,” the International Multi Conference of Engineers and Computer Scientists, Vol. II.
[29] Bajer, M., J. Kala and J. Barnat (2007), “Modeling Chemical Anchor Placed in Concrete using Different FEM Systems,” Modern Building Materials, Structures and Techniques, Vol. Ⅲ.
[30] Parvanova, S. L., Kazakov, K. S., et al. (2002), “Modelling the Nonlinear Behaviour of R/C Beams with Moderate Shear Span and without Stirrups Using ANSYS,” University of Architecture.
[31] Kachlakev, D. and Miller, T. (2001). “Finite Element Modeling of Reinforced Concrete Structures Strengthened with FRP Laminates,” Oregon Department of Transportation Report
[32] Xiao, R. Y. and C. S. Chin (2005). “Nonlinear Finite Element Modelling of the Tension Softening of Conventional and Fibrous Cementitious Composites,” Association of Computational Mechanics in Engineering, Vol. 13.
[33] Al-Darzi and S. Y. K. (2007). “Effects of Concrete Nonlinear Modeling on the Analysis of Push-out Test by Finite Element Method,” Journal of Applied Sciences , Vol. 7, No. 5, pp. 743-747.
[34] Anderson, P. (2008). “Concentration of Plastic Strains in Steel Liners Due to Concrete Cracks in the Containment Wall,” International Journal of Pressure Vessels and Piping, Vol. 85, No. 10, pp. 711-719.
[35] Chakrabarti, A., A. Chandra, et al. (2008). “Finite Element Analysis of Concrete Columns Confined with FRP Sheets,” Journal of Reinforced Plastics and Composites, Vol. 27, No. 12, pp. 1349-1373.
[36] Mahmood, M. N. (2007). “Nonlinear Analysis of Reinforced Concrete Beams under Pure Torsion,” Journal of Applied Sciences, Vol. 7, No. 22, pp. 3524-3529.
[37] Padmarajaiah, S. K. and A. Ramaswamy (2002). “A Finite Element Assessment of Flexural Strength of Prestressed Concrete Beams with Fiber Reinforcement,” Cement and Concrete Composites, Vol. 24, No. 2, pp. 229-241.
[38] 李威璁(2001),含牆鋼筋混凝土構架試驗研究,碩士論文,國立成功大學土木工程研究所,台南。
[39] 陳立平(2002),含開口RC牆非韌性構架之耐震行為研究,碩士論文,國立台灣科技大學營建工程研究所,台北。
[40] 陳俊宏(2003),含開口RC牆非韌性構架之耐震抗剪強度研究,碩士論文,國立台灣科技大學營建工程研究所,台北。
[41] 司順瑋(2008),低矮型鋼筋混凝土剪力牆之實驗與分析研究,碩士論文,國立台北科技大學土木與防災研究所,台北。
[42] 何東杰(2002),鋼鈑補強混凝土樑之分析,碩士論文,朝陽科技大學營建工程系碩士班,台中。
[43] 何象鏞(2007),含牆鋼筋混凝土結構側推分析,博士論文,國立中央大學土木工程研究所,桃園。
[44] 余明松(2002),低型R.C剪力牆-構架互制實驗研究,碩士論文,國立成功大學土木工程學系碩博士班,台南。
[45] 李輝煌(2005),ANSYS工程分析基礎與觀念,高立圖書有限公司,台北,第89~449頁。
[46] 林彥傑(2003),中輕度受損非韌性RC構件快速修復與補強之研究,碩士論文,國立台北科技大學土木與防災研究所,台北。
[47] 林家民(2008),中高型RC剪力牆之等值柱參數建立與分析,碩士論文,國立台北科技大學土木與防災研究所,台北。
[48] 邱聰智(2002),碳纖FRP在鋼筋混凝土牆之耐震補強研究,碩士論文,國立台灣科技大學營建工程系,台北。
[49] 陳世育(2004),複合材料應用於鋼筋混凝土結構補強之有限元素分析,碩士論文,暨南國際大學土木工程學系,南投。
[50] 陳俊宏(2003),含開口RC牆非韌性構架之耐震抗剪強度研究,碩士論文,國立台灣科技大學營建工程系,台北。
[51] 陳冠帆(2005),韌性剪力牆行為之有限元素分析,碩士論文,國立成功大學建築學系碩博士班,台南。
[52] 陳振瑋(2005),以等值柱模型分析含牆RC構架,碩士論文,國立臺北科技大學土木與防災研究所,台北。
[53] 黃文政(2004),三維非線性RC梁鋼板補強之有限元素分析,碩士論文,國立台北科技大學土木與防災技術研究所,台北。
[54] 黃旭輝(2003),含磚牆非韌性RC構架之數值模擬,碩士論文,國立中央大學土木工程研究所,桃園。
[55] 黃冠勳(2001),雙層鋼筋混凝土剪力牆承受反向重覆載重之剛度變化及耐震診斷研究,碩士論文,國立成功大學建築及都市設計研究所,台南,1989。
[56] 葉永信(2001),鋼筋混凝土牆之碳纖FRP耐震補強研究,碩士論文,國立台灣科技大學營建工程系,台北。
[57] 葉瑞德(2002),高型RC剪力牆-構架互制實驗研究,碩士論文,國立成功大學土木工程學系碩博士班,台南。
[58] 劉晉齊(2005),有限元素分析與ANSYS的工程應用,滄海書局,台中,第2~379頁。
[59] 蕭輔沛(2004),鋼筋混凝土剪力牆-構架互制行為之實驗研究與數值模擬,博士論文,國立成功大學土木工程學系碩博士班,台南。
[60] 賴慶鴻(1999),鋼筋混凝土剪力牆強度與剛度之試驗與分析,碩士論文,國立成功大學建築學系,台南。
[61] 蘇進國(2004),以結構性能為基準之房屋建築物耐震能力評估,碩士論文,國立台北科技大學土木與防災研究所,台北。
論文全文使用權限:同意授權於2011-08-27起公開