現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:隧道掘進之土(岩)-機互制與可挖指標研探 [以論文名稱查詢館藏系統]
論文英文名稱:A Study of Tunnel Penetration to the Soil(Rock)-Machine Interaction and Cuttability Indices [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:98
出版年度:99
中文姓名:楊喆巽
英文姓名:Zhe-Xun Yang 楊喆巽
研究生學號:96428037
學位類別:碩士
語文別:中文
口試日期:2010-07-29
論文頁數:122
指導教授中文名:陳立憲
口試委員中文名:高宗正;何泰源;王泰典
中文關鍵詞:全斷面隧道鑽掘機工法潛盾工法管推工法廣義式掘削機制量綱分析可挖性指標
英文關鍵詞:Tunnel boring machine(TBM)Shield tunnel(ST)Pipe jacking(PJ)Generalized cutting mechanismDimensional analysis(DA)Cuttability indices(CI)
論文中文摘要:為俾助大眾捷運之興築與汙水下水道之普及;全台地下開挖工程之營造方興未艾,各項機械式掘削開挖工程案例日增,惟大地工程之學術研究多著重在開挖行為之安全或穩定性評估抑或僅止於工程實務報告,對於機械式之掘削機制則鮮少研究,僅能仰賴日規、歐規等國外廠商之經驗,不必然合適臺灣現地工況。而相關掘進技術於國內、外並無較具學理之施作評核。故本研究首以廣義式地盤-機械開挖之互制行為作統整分析,即先就地質破壞特徵歸納成三類地質材料:(1)脆性類岩、(2)延性土壤,與(3)延-脆複合材料(如卵礫石層);再由量綱分析針對岩土-機頭之接觸互制行為之推進力系評估影響因子予以正規化。亦即針對:(1)推進力(2)扭矩分別與掘削速率之工進關係,作為正規化工進圖之初步建置,並求取工進橢圓特徵值,作為機械掘削可挖指標(Cuttability indices)之研探。再輔以國內潛盾隧道及管推工法案例調查;分別就其正常推進與異況檢討驗證之。如此據以研析其開挖機制與效率之可挖性乃至適確性。綜整上述研究方法,可得以下結果:
(1) 由正規化之掘削速率與推進力系工進圖,求得『工進橢圓特徵值』:
〈圓心(O)、面積(A)、長、短軸(ax、by或ay、bx)〉,蓋可依此特徵分別作為研析〈地質群集、工況良窳、可挖變異〉以至於整體適確之探討。
(2) 研究案例針對地質材料為(I)卵礫石、(II)風化砂岩及(III)粉土質黏土層,求得『工進橢圓特徵值(O, A, a、b)』分別為:
I = [O(13.85, 10.8), A = 161.25, ay = 14.26、bx = 14.21]、
II = [O(40.79, 34.05), A = 258.28, ax = 31.44、by = 10.46]及
III = [O(23.98, 98.37), A = 492.08, ay = 44.06、bx = 14.22]。
(3) 上述(2)結果再與理論公式比對(Ko-base estimate),估求卵礫石層正常施工之正規化推力約於 4.88~16.3 × 10-3之間;而風化砂岩層之值約為 14~55 × 10-3,並求驗卵礫石層工進橢圓特徵值之面積約為90 平方單位,其與本案例調查之相對面積介於1.25~2.21。
(4) 不同面盤口徑之多尺度機械式掘削開挖之施工良窳、可挖性與適確性之判準,可以「工進橢圓」及其長、短軸量化之;將其作廣義化之研析,由地況似同但工法、種不同,反之亦然狀況下,驗證之。
最後綜合外業調查以提出可挖指標之標準作業程序之建議,應可作為現場推進工況良窳之判別。
論文英文摘要:To enable the Mood to help mass transit construction and the popularity of sewage, Taiwan's underground excavation works to create the ascendant. The mechanical excavation excavation cases increasing. However, the academic study geotechnical emphasis being given to the safety or stability of the excavation behavior assessment or only limited work is reported, the excavation for the mechanical system are very few studies can only rely on rules , regulations and other foreign manufacturers of Europe Experience is not necessarily appropriate to conditions in Taiwan . The relevant tunneling technology in Taiwan, and there is no reason for more school facilities for assessment . In this study, the first use of the generalized geological - mechanical excavation of the interaction behavior for integrated analysis, that the first damage on generalized geological material characteristics grouped into three categories : (1) brittle rock type , (2) the ductility of the soil, and (3) extension - brittle composite materials ( such as gravel layer ); then dimensional analysis for rock - head interaction behavior of the contact force system to assess the impact factor to promote standardization . That is, for : (1) thrust (2) torque , respectively excavation rate of work into the relationship between the chemical into the charts as a formal study of this thesis , and to strike a work into the elliptic eigenvalue , mechanical excavation to be tapped as indicators of research exploration. Supplemented by pipe jacking and shield tunneling construction methods to promote case studies ; were on their normal progression and the differentiation status of the review verified . So far as to study and analyze the mechanism and efficiency of its excavation to be tapped as well as fitness of correctness . Summarizing the above methods , the availability of the following results:
(1) By the regularization of the excavation work rate and promote the system of forces into the plan , obtained by working into the 『elliptic eigenvalue』center of a circle (O), area (A), long , short axis (ax, by , or ay, bx)x3e, can cover And so were used as study and analyze the characteristics of x3c Geological cluster , condition indices, the variation can be dug x3e extent that the whole appropriate and correct for study .
(2) Case study for geological materials (I) gravel , (II) weathered sandstone and (III) silty clay layer , obtained 『 workers into the elliptic eigenvalue (O, A, a, b) 』 were :
I = [O(13.85, 10.8), A = 161.25, ay = 14.26、bx = 14.21]、
II = [O(40.79, 34.05), A = 258.28, ax = 31.44、by = 10.46] and
III = [O(23.98, 98.37), A = 492.08, ay = 44.06、bx = 14.22]
(3) (2) above results and then compared with the theoretical formula (Ko-base estimate), estimated demand construction of the gravel layer in the normal standardization push about between 4.88 ~ 16.3 × 10-3 ; the weathered sandstone of the value of about 14 ~ 55 × 10-3, and to seek work experience into the gravel layer elliptic eigenvalue of an area of about 90 square units, with the relative size of the case studies ranged from 1.25 to 2.21 .
(4) Different facial disc diameter multi-scale mechanical excavation excavation of the construction of these indices, to be tapped with the appropriate and correct nature of the sub- standard , you can " work into the oval "and its long , short axis quantitative ; to a broad analysis of the study , But from the ground state may work with the law, different , and vice versa situation, verified .Industry surveys Synthetical External finally be tapped to raise the standard operating procedures target the recommendation , should be virtue or as a field of identification Jacking conditions .
論文目次:中文摘要 i
英文摘要 iii
誌 謝 vi
目 錄 vii
表目錄 x
圖目錄 xii
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究方法與範圍 3
1.3 研究架構與分章概述 4
第二章 文獻回顧 6
2.1 多尺度機械式隧道掘進工程簡述與比較 7
2.2 廣義式機械掘削機制 11
2.2.1 以材料破壞特徵作分類 11
2.2.2 掘削機制I:單一刀頭各種不同接觸破壞力學之影響因子 13
2.2.3 掘削機制II:雙刀配置之最適間距a7 19
2.2.4 掘削機制III:切削面盤整體配置因子之考量 20
2.3 量綱分析與相似性 21
2.3.1 物理量的單位與因次之關係 21
2.3.2 無因次參數之轉換 23
2.3.3 量綱分析之應用實例 25
2.4 機械式隧道開挖施工之分析指標 28
第三章 研析機械式掘削開挖之可挖性指標 32
3.1 機械式掘削開挖物理場概述 32
3.2 機械式鑽掘開挖因子之量綱分析 33
3.3 可挖性指標之建立 36
3.3.1 地質材料之無因次因子 36
3.3.2 推進力系之無因次因子 37
第四章 機械式可挖性指標之實務驗證 41
4.1 研究案例I:臺北縣新店地區汙水下水道系統新建工程 44
4.1.1 研究案例I:地下掘進工況調查 44
4.1.2 研究案例I:推進資蒐與研析 49
4.2 研究案例II:中部科學工業園區臺中基地汙水放流管線工程 58
4.2.1 研究案例II:地下掘進工況調查 58
4.2.2 研究案例II:推進資蒐與研析 66
4.3 研究案例III:臺灣桃園國際機場聯外捷運系統建設計畫CU02A標 75
4.3.1 研究案例III:地下掘進工況調查 75
4.3.2 研究案例III:推進資蒐與研析 81
4.4 多尺度機械式掘削開挖之比對分析 90
4.5 可挖指標於異況排除之案例檢討 98
第五章 結論與建議 101
5.1 結論 101
5.2 建議 103
參考文獻 105
附錄A:地下掘削開挖效率現地調查表 A-1
附錄B:口試委員意見回覆表(暫列) B-1
符號對照表 C-1
關鍵詞中英文及縮寫對照表 D-1
論文參考文獻:[1] 王紹宇,分離元素法於接觸破壞之刀刃磨耗與雙刀效應之模擬暨耦合有限差分法之數值初探,碩士論文,國立臺北科技大學,台北,2008。
[2] 江明軒,FLAC耦合PFC2D應用於雙楔刀貫切破壞之初探,碩士論文,國立臺北科技大學,台北,2008。
[3] 巫奇頴,同步化聲、光非破壞檢測探求類岩材料於雙刀貫切及臨界間距之研析,碩士論文,國立臺北科技大學,台北,2009。
[4] 林玉清、蘇洺弘、王傳宗,「台北縣新店地區污水下水道系統新建工程第一標承包廠商簡報」(產學交流資料,未發表),2008。
[5] 林郁修,分離元素法於岩石貫切破壞試驗之模擬分析,碩士論文,國立臺北科技大學,台北,2007。
[6] 倪至寬、蔡諭璋,「各種型式掘進機於卵礫石層掘進之探討」,臺灣公路工程,第34卷,第5期,2008,第17-33頁。
[7] 張文城、王慶麟、曾子儀,「砂土層礫石層及岩層中隧道開挖之潛盾機之設計與施工考量概述」,岩盤工程研討會,臺北,2008,第363-372頁。
[8] 張吉佐等,隧道工程施工技術解說圖冊,臺北市:交通部臺灣區國道新建工程局,2006,第105-109頁。
[9] 陳拓丞,應用因次分析法於奈米壓痕試驗之理論分析與數值模擬:殘留應力、基材效應與黏彈性質之研究,碩士論文,國立成功大學,臺南,2005。
[10] 陳立憲、楊喆巽、林國龍、林郁修、蘇億峰,「廣義式地下掘削機制及應用於卵礫石層管推工法之案例分析」,中國土木水利工程學會會刊,第36卷,第6期,2009,45-56頁。
[11] 陳志南等,隧道工程實務,臺北縣:科技圖書,1998,第111-123頁。
[12] 奧村機械股份有限公司,「潛盾機設計概要和潛盾施工法技術資料簡報」(產學交流資料,未發表),2009
[13] 褚炳麟、孫漢豪、許金龍,「推進工法在卵礫石地層中之案例研究」,地工技術,第106期,2005,第15-24頁。
[14] 蔡諭璋,不同掘進機在卵礫石層線形控制之研究,碩士論文,國立臺北科技大學,臺北,2009。
[15] 蔣緯鳴,下水道短管推進力分析,碩士論文,國立中央大學,中壢,2006。
[16] 盧協成、童念遠,「潛盾機於桃園卵礫石層之設計與施工案例探討」,地工技術,第118期,2008,第59-68頁。
[17] 藍啟榮、顏君行、李英彰、唐其巍,「長距離推進在台中卵礫石層中之案例研究」,地工技術,第115期,2008,第83-90頁。
[18] 顏君行,管推進工程管線與土壤互制行為之分析研究,碩士論文,國立中興大學,臺中,2006。
[19] 蘇億峰,磨耗與邊界效應對岩石貫切破壞之數值模擬,碩士論文,國立臺北科技大學,台北,2008。
[20] Balci, C., "Correlation of Rock Cutting Tests with Field Performance of a TBM in a Highly Fractured Rock Formation: A Case Study in Kozyatagi-Kadikoy Metro Tunnel, Turkey," Tunnelling and Underground Space Technology, vol.24, 2009, pp.423-435.
[21] Barenblatt, G., I., Scaling, Self-similarity, and Intermediate Asymptotics, Cambridge University Press, Cambridge, 1996.
[22] Barla, M., Camusso M. and Aiassa S., "Analysis of Jacking Forces during Microtunnelling in Limestone," Tunnelling and Underground Space Technology, vol.21, 2006, pp.668-683.
[23] Bridgman, P. W., Dimensional Analysis, Yale University Press, Conn., 1922.
[24] Buckingham, E., On Physically Similar Systems: Illustrations of the Use of Dimensional Equations, Phys. Rev., Vol.4, 1914, pp. 345-376.
[25] Chen, L. H. and Labuz, J. F., "Indentation of Rock by Wedge-shaped Tools, " International Journal of Rock Mechanics and Mining Sciences, vol.43, 2006, pp.1023-1033.
[26] Chen, L. H., Failure of Rock under Normal Wedge Indentation, Ph. D. Thesis, University of Minnesota, U.S.A., 2002.
[27] Farrokh, E. and Rostami, J., "Correlation of Tunnel Convergence with TBM Operational Parameters and Chip Size in the Ghomroud Tunnel, Iran," Tunnelling and Underground Space Technology, vol.23, 2008, pp.700-710.
[28] Farrokh, E. and Rostami, J., "Effect of Adverse Geological Condition on TBM Operation in Ghomroud Tunnel Conveyance Project," Tunnelling and Underground Space Technology, vol.24, 2009, pp.436-446.
[29] Huang, H., Damjanac, B. and Detoumay, E., "Normal Wedge Indentation in Rocks with Lateral Confinement," Rock Mechanics and Rock Engineering, vol.31, no.2, 1998, pp.81-94.
[30] Ipsen, D. C., Units, Dimensions,and Dimensionless Numbers., New York:McGraw-Hill, 1960.
[31] Langhaar, H. L., Dimensional Analysis and Theory of Models, New York:Wiley, 1951.
[32] Lawn, B. and Swain, M., "Microfracture Beneath the Point Indentation in Brittle Solids," J. Mater. Sci., 1975, pp. 113-122.
[33] Ostojic, P. and McPherson, R., "A Review of Indentation Fracture Theory: Its Development, Principles and Limitations," International Journal of Fracture, vol.33, no.4, 1987, pp.297-312.
[34] Nelson, P., N. et al., Tunnel Boring Machine Performance Study, New York:UMTA, 1984, PP.11-1 - 11-2.
[35] 內政部營建署全國污水下水道用戶接管普及率及整體污水處理率統計:http://www.cpami.gov.tw/chinese/index.php?option=com_content&view=article&id=9995&Itemid=53
論文全文使用權限:同意授權於2015-09-03起公開