現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:林口台地非飽和紅土伸張強度之探討 [以論文名稱查詢館藏系統]
論文英文名稱:Extension Strength of Unsaturated Lateritic Soil [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:99
出版年度:100
中文姓名:李俊瑩
英文姓名:Jun-Ying Li
研究生學號:96428032
學位類別:碩士
語文別:中文
口試日期:2010-07-02
論文頁數:193
指導教授中文名:魏敏樺
指導教授英文名:Meen-Wah Gui
口試委員中文名:陳皆儒;張榮峰
口試委員英文名:Jie-Ru Chen;Rong-Fong Jhang
中文關鍵詞:非飽和土壤紅土三軸伸張不排水試驗三軸伸張排水試驗伸張強度破壞包絡面
英文關鍵詞:unsaturated lateritic soiltriaxial extension testtriaxial extension strengthextension strength envelope
論文中文摘要:過去傳統分析土壤研究中,常忽略土壤伸張強度,但在實際情況下,土壤本身會發生伸張現象。若忽略土壤伸張行為,不僅無法清楚瞭解土壤伸張性質,在許多的情況下土壤會受到伸張,例如:邊坡滑動上部土壤受到伸張作用、深開挖造成土壤解壓發生伸張作用、基礎發生滑動部分土壤受到伸張作用,因此藉由非飽和土壤伸張試驗之研究,可以讓我們初步瞭解非飽和土壤能承受伸張強度,藉由土壤的伸張強度和伸張應變,瞭解非飽和土壤受到伸張時之變化情況。
本研究在探討非飽和紅土伸張強度,及基質吸力變化對非飽和土壤伸張強度的影響。針對林口紅土台地之現地擾動土樣,製成重模試體,利用改良非飽和三軸儀器,進一步求得非飽和土壤之伸張強度,由三軸伸張不排水試驗(EU)和三軸伸張排水試驗(ED),根據不同基質吸力及淨正向應力條件下,在固定圍壓的情況,減少位移量,使試體受到伸張作用,以求得各條件下非飽和土壤伸張強度,由一系列的試驗資料可求得非飽和伸張破壞包絡面,進而建立非飽和土壤伸張資料,以便未來現地穩定性分析與破壞機制之數值模擬時,可將伸張強度列入分析考量。
論文英文摘要:In some practical applications, such as the investigation of the soil strength in the base of deep excavation and the tensile crack propagation at the crest of slope, the use of triaxial extension test in soil behaviour simulation is more appropriate than the triaxial compression test. This study aimed at finding the triaxial extension strength of unsaturated lateritic soil, which can be found in many places in tropical countries. To be able to understand the mechanism of tensile crack development at the crest of slope and the subsequent slip failure associated to it, a series of triaxial extension tests have been conducted on unsaturated lateritic soil specimens. Detailed description of equipment and testing procedures used in the tests has first been outlined. The extension shear strength of the study soil has been obtained and compared to its compressive shear strength. An extended extension strength envelope for the study soil has been proposed; and finally, reasons for the unexpectedly low extension shear strength of the tested material were also discussed.
論文目次:中文摘要 i
英文摘要 ii
誌謝 iii
目錄 v
表目錄 vii
圖目錄 ix
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究方法與內容 3
1.3 論文架構 4
第二章 文獻回顧 7
2.1 非飽和土壤介紹 7
2.1.1 土壤的吸力理論 10
2.1.2 非飽和土壤之微觀特性 13
2.1.3 非飽和土壤之有效應力變化 17
2.1.4 非飽和應力張量之表示 19
2.2 非飽和土壤拉力和剪力強度理論 21
2.2.1 Griffith理論之拉力破壞 21
2.2.2 Griffith伸張理論之剪力強度 23
2.2.3 非飽和土壤之剪力強度包絡線 23
2.2.4 非飽和土壤之拉力強度包絡線 24
2.2.5 非飽和土壤之抗拉強度 28
2.3 相關伸張文獻 32
第三章 試驗內容及方法流程 39
3.1 土壤來源介紹及現地地質地形概述 40
3.2 改良傳統三軸伸張試驗 41
3.2.1 試驗步驟 46
3.2.1.1 試體準備及飽和 46
3.2.1.2 壓密平衡階段 49
3.2.1.3 試體伸張 49
3.3 三軸伸張注意事項 50
3.4 非飽和軸轉換技術(Axis Translation Technique) 50
第四章 試驗結果分析與討論 57
4.1 紅土物理特性 57
4.2 夯實試驗結果 60
4.3 單向度壓密試驗結果 62
4.4 壓密理論 65
4.5 壓力鍋試驗與鹽溶液試驗 67
4.5.1 土壤水分特性曲線之經驗公式介紹 69
4.5.1.1 Burdine Model (1953) 70
4.5.1.2 Gardner Model (1958) 70
4.5.1.3 van Genuchten Model (1980) 71
4.5.1.4 Fredlund and Xing (1994) 71
4.6 三軸伸張試驗結果 73
4.6.1 三軸非飽和伸張不排水試驗(EU)結果 77
4.6.2 三軸飽和伸張不排水試驗(EU)結果 94
4.6.3 三軸非飽和伸張排水試驗(ED)結果 101
4.6.4 三軸飽和伸張排水試驗(ED)結果 111
4.6.5 三軸伸張試驗資料 114
4.6.6 壓密曲線資料整理 115
4.7 伸張試驗結果討論 123
第五章 伸張破壞包絡面迴歸 143
5.1 Matlab多元線性迴歸分析 143
5.2 雙曲線迴歸分析 149
5.3 雙曲面迴歸分析 151
5.4 迴歸分析之結果 154
5.5 剪力試驗與伸張試驗資料分析 157
第六章 結論與建議 161
6.1 結論 161
6.2 建議 162
參考文獻 163
附錄A土壤基本物理試驗 172
附錄B土壤水分特性曲線試驗 182
符號彙編 189
作者簡介 193
論文參考文獻:[1]ASTM D1557-09. (2009). "Standard Test Method for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lb/ft3 (2,700 kN-m/m3))1." West Conshohocken. Pa., .

[2]ASTM D2435-04. (2004). "Standard test method for one-dimensional consolidation properties of soils using incremental loading." West Conshohocken. Pa., .

[3]ASTM D2487-10. (2010). "Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)1 ." West Conshohocken. Pa., .

[4]ASTM D422-63. (2007). "Standard Test Method for Particle-Size Analysis of Soils1." West Conshohocken. Pa., .

[5]ASTM D4318-10. (2010). "Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils1." West Conshohocken. Pa., .

[6]ASTM D5298-10. (2010). "Standard Test Method for Measurement of Soil Potential (Suction) Using Filter Paper1." West Conshohocken. Pa., .

[7]ASTM D6836-02(2008)e2. (2008). "Standard Test Methods for Standard Test Methods for Desorption Using Hanging Column, Pressure Extractor, Chilled Mirror Hygrometer, or Centrifuge1." West Conshohocken. Pa., .

[8]ASTM D854-10. (2010). "Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer1." West Conshohocken. Pa., .

[9]Ayoubian, A., and Robertson, P. K. (1998). "Void ratio redistribution in undrained triaxial extension tests on Ottawa sand." Canadian Geotechnical Journal, 35(2), 351-359.

[10]Balasubramaniam, A. S., and Waheed-Uddin. (1977). "Deformation characteristics of weathered Bangkok clay in triaxial extension." Geotechnique, 27(1), 75-92.

[11]Bishop, A. W., and Garga, V. K. (1969). "Drained tension tests on London clay." J.Terramech., 19(2), 309-313.

[12]Brace, W. F. (1960). "An Extension of the Griffith Theory of Fracture to Rocks." J.Geophys.Res., 65(10), 3477-3480.

[13]Brace, W. F., and Bombolakis, E. G. (1963). "A Note on Brittle Crack Growth in Compression." J.Geophys.Res., 68(12), 3709-3713.

[14]Buckingham, E. (1907). "Studies on the movement of soil moisture. USDA Bur." Soils Bull, 38.

[15]Burdine, N. T. (1953). "Relative Permeability Calculation from Size Distribution Data." Transactions, American Institute of Mining, 198 71-78.

[16]Corey, A. T. et al. (1967). "Comparative Terminologies for Water in the Soil-Plant-Atmosphere System." In Irrigation in Agricultural Soils, Hagan, R. M. Et Al., Eds., Amer. Soc. Agron., Mono., 11(12),.

[17]Corey, A. T., and Kemper, W. D. (1961). "Concept of total potential in water and its limitations." Soil Sci., 91(5), 299-302.

[18]Croney, D., and Coleman, J. D. (1948). "Soil thermodynamics applied to the movement of moisture in road foundations." Proc. 7th Int. Cong. Appl. Mech, 163-177.

[19]Davies, J. T., and Rideal, E. K. (1963). "lnterfacial Phenomena." Academic Press, New York, 747.

[20]Desai, C. S., and Siriwardane, H. J. (1984). Constitutive laws for engineering materials, with emphasis on geologic materials. Prentice-Hall, .

[21]Fisher, R. A. (1926). "On the capillary forces in an ideal soil; correction of formulae given by W. B. Haines." The Journal of Agricultural Science, 16 492-505.

[22]Fredlund, D. G, Xing, A. (1994). "Equations for the soil-water characteristic curve." Canadian Geotechnical Journal, 31(4), 521-532.

[23]Fredlund, D. G. (1979). "Second Canadian Geotechnical Colloquium: Appropriate concepts and technology for unsaturated soils." Canadian Geotechnical Journal, 16(1), 121-139.

[24]Fredlund, D. G., and Morgenstern, N. R. (1977). "Stress state variables for unsaturated soils." Journal of the Geotechnical Engineering Division, 103(5), 447-466.

[25]Fredlund, D. G., and Rahardjo, H. (1993). Soil Mechanics for Unsaturated Soils. Wiley-Interscience Publication, .

[26]Fredlund, D. G., Morgenstern, N. R., and Widger, R. A. (1978). "SHEAR STRENGTH OF UNSATURATED SOILS." Canadian Geotechnical Journal, 15(3), 313-321.

[27]Fredlund, M. D., Fredlund, D. G., and Wilson, G. W. (2000). "An equation to represent grain-size distribution." Canadian Geotechnical Journal, 37(4), 817-827.

[28]Frydman, S. (1967). "Triaxial and tensile strength tests on stabilized soil." Proceedings of the Third Asian Regional Conference on Soil Mechanics and Foundation Engineering, Haifa, Israel, 25-28.

[29]Gardner, W. R. (1958). "Some Steady-State Solutions of the Unsaturated Moisture Flow Equation With Application To Evaporation From A Water Table." Soil Science, 85(4), 228-232.

[30]Gardner, W. R. (1956). "Calculation of capillary conductivity from pressure outflow data." Soil Science Society of America Proceeding, 20(3), 317-320.

[31]Georgiannou, V. N., Burland, J. B., and Hight, D. W. (1990). "The undrained behaviour of clayey sands in triaxial compression and extension." Geotechnique, 40(3), 431-449.

[32]Griffith, A. A. (1924). "The theory of rupture." Proc. 1st Int. Congress Applied Mechanics, 55-63.

[33]Griffith, A. A. (1921). "The Phenomena of Rupture and Flow in Solids." Philosophical Transactions of the Royal Society of London.Series A, Containing Papers of a Mathematical Or Physical Character, 221 pp. 163-198.

[34]Haines, W. B. (1925). "Studies in the physical properties of soils: I. Mechanical properties concerned in cultivation." The Journal of Agricultural Science, 15(02), 178.

[35]Hilf, J. W. (1956). "An Investigation of Pore-Water Presure in Compacted Cohesive Soil." Ph.D. Dissertation, 654.

[36]Holtz, R. D., and William, D. K. (1981). An Introduction to Geotechnical Engineering. Englewood Cliffs, .

[37]Khalili, N., and Khabbaz, M. H. (1998). "A unique relationship for X for the determination of the shear strength of unsaturated soils." Geotechnique, 48(5), 681-687.

[38]Krahn, J., and Fredlund, D. G. (1972). "On Total Matric and Osmotic Suction." J.Soil Sci., 114(5), 339-348.

[39]Krishnayya, A. V. G., Eisenstein, Z., and Morgenstern, N. R. (1974). "Behavior of compacted soil in tension." Journal of the Geotechnical Engineering Division, 100(9), 1051-1061.

[40]Kulhawy, F. H., and Mayne, P. W. (1990). "Manual on estimating soil properties for foundation design. Report EL-6800." Electric Power Research Institute, Palo Alto, CA, .

[41]Lee, I. K., and Ingles, O. G. (1968). "Strength and deformation of soils and rocks." Soil Mechanics, Selected Topics (Ed.IK Lee), 195-294.

[42]Lu, N., and Likos, W. J. (2004). Unsaturated Soil Mechanics. John Wiley and Sons, .

[43]McClintock, F. A., and Walsh, J. B. (1962). "Friction on Griffith cracks in rocks under pressure." Proc. 4th US Nat. Congr. Appl. Mech, 1015-1022.

[44]Morris, P. H., Graham, J., and Williams, D. J. (1992). "Cracking in drying soils." Can.Geotech.J., 29(2), 263-277.

[45]Narain, J., and Rawat, P. C. (1970). "Tensile strength of compacted soils." J.Terramech., 96(6), 2185-2190.

[46]Nishimura, S., Minh, N., and Jardine, R. (2007). "Shear strength anisotropy of natural London Clay." Geotechnique, 57(1), 49-62.

[47]Palm, W. J. (2004). Introduction to MATLAB 7 for Engineers. McGraw-Hill Science/Engineering/Math, .

[48]Parry, R. H. G. (1960). "Triaxial Compression and extension test on remold saturated clay." Geotechnique, 10(4), 166-180.

[49]Rahardjo, H., and Fredlund, D. G. (1995). "Experimental Verification of the theory of consolidation for Unsaturated Soils." Canadian Geotechnical Journal, 32 749-766.

[50]Reades, D. W., and Green, G. E. (1976). "INDEPENDENT STRESS CONTROL AND TRIAXIAL EXTENSION TESTS ON SAND." Geotechnique, 26(4), 551-576.

[51]Schofield, R. (1935). "The pF of the Water in Soil." Trans. 3rd Int. Congress Soil Science., 2 37-48.

[52]Snyder, V. A., and Miller, R. D. (1985). "Tensile strength of unsaturated soils." Soil Sci.Soc.Am.J., 49(1), 58-65.

[53]Teachavorasinskun, S., Thongchim, P., and Lukkunaprasit, P. (2002). "Stress rate effect on the stiffness of a soft clay from cyclic, compression and extension triaxial tests." Geotechnique, 52(1), 51-54.

[54]Terzaghi, K. (1943). "Theoretical Soil Mechanics." New York, .

[55]Toyota, H., Nakamura, K., Sakai, N., and Sramoon, W. (2003). "Mechanical properties of unsaturated cohesive soil in consideration of tensile stress." Soils and Foundations, 43(2), 115-122.

[56]Toyota, H., Nakamura, K., and Sramoon, W. (2004). "Failure criterion of unsaturated soil considering tensile stress under three-dimensional stress conditions." Soils and Foundations, 44(5), 1-13.

[57]Tschebotarioff, G. P., Ward, E., and DePhilippe, A. (1953). "The tensile strength of disturbed and recompacted soils." Proceedings of third international conference on soil mechanics and foundation engineering, 207-210.

[58]Van Genuchten, M. T. (1980). "A Closed Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils." Soil Sci.Soc.Am.J., 44 892-898.

[59]Wang, J. -., Zhu, J. -., Chiu, C. F., and Zhang, H. (2007). "Experimental study on fracture toughness and tensile strength of a clay." Eng.Geol., 94(1-2), 65-75.

[60]Wichtmann, T., Niemunis, A., and Triantafyllidis, T. (2007). "Strain accumulation in sand due to cyclic loading: Drained cyclic tests with triaxial extension." Soil Dyn.Earthquake Eng., 27(1), 42-48.

[61]Wu, W., and Kolymbas, D. (1991). "On some issues in triaxial extension tests." Geotech Test J, 14(3), 276-287.

[62]Yamaguchi, H., Ohira, Y., Kogure, K., and Mori, S. (1985). "UNDRAINED SHEAR CHARACTERISTICS OF NORMALLY CONSOLIDATED PEAT UNDER TRIAXIAL COMPRESSION AND EXTENSION CONDITIONS." Soils and Foundations, 25(3), 1-18.

[63]Yamamuro, J. A., and Lade, P. V. (1995). "Strain localization in extension tests on granular materials." Journal of Engineering Mechanics - ASCE, 121(7), 828-836.

[64]Yoshimine, M., and Kataoka, M. (2007). "STEADY STATE OF SAND IN TRIAXIAL EXTENSION TEST." International Workshop on Earthquake Hazards and Mitigation, 431-438.

[65]張少宏, 駱亞生, and 郭敏霞. (2006). "非飽和土的三軸拉伸試驗研究." 人民黃河, 28(10), 66-67.

[66]拱祥生、林宏達. (2001). "不飽和土壤力學性質試驗及其在邊坡工程之應用." 地工技術, (83), 39-50.

[67]李世傑. (2008). "以三軸試驗探討非飽和紅土之力學行為." PhD thesis, 國立台北科技大學, 台北市.

[68]李臺生. "粘土在非均向性壓密下之三軸不排水伸張試驗強度之研究." PhD thesis, 國立成功大學, 台南市.

[69]林宏達、拱祥生. (2001). "不飽和土壤力學性質試驗及其在邊坡工程之應用." 地工技術, (83), 39-52.

[70]游淳名. (2006). "非飽和紅土剪力強度之研究-以林口台地為例." PhD thesis, 國立臺北科技大學, 台北市.

[71]許俊森. "林口台地非飽和紅土滲透性質之研究." PhD thesis, 國立臺北科技大學, 台北市.

[72]鄭雅仁. (2009). "台灣部分地區土壤水份特性曲線之預測." PhD thesis, 國立台北科技大學土木與防災研究所, 台北.

[73]陳家豪. (2009). "非飽和紅土k0 壓密行為之研究." PhD thesis, 國立台北科技大學, 台北市.
論文全文使用權限:同意授權於2016-07-25起公開