現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:混編纖維複合梁構件之三點抗彎實驗及力學行為探討 [以論文名稱查詢館藏系統]
論文英文名稱:A Study on the 3-Point Bending Test and Mechanical Behavior of the Hybrid FRP Beam [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:99
出版年度:100
中文姓名:甘淑婷
英文姓名:Shu-Ting Kan
研究生學號:98428007
學位類別:碩士
語文別:中文
口試日期:2011-07-16
論文頁數:86
指導教授中文名:李有豐
口試委員中文名:陳清泉;徐增興
中文關鍵詞:玄武岩纖維碳纖維混編纖維破壞模式三點抗彎實驗
英文關鍵詞:Basalt FiberCarbon FiberHybrid FiberMode of failure3-point
論文中文摘要:本研究針對既有玻璃纖維強化高分子(Glass Fiber Reinforced Plastic, GFRP)複合材料之高抗拉強度及低彈性模數等特性進行探討,因低彈性模數容易造成梁構件撓度過大的問題。為改變雙層腹版梁(Double Web Beam, DWB)構件之破壞模式,使力量能傳遞至拉力側,於構件內部填充環氧樹脂砂漿,並於梁構件外側貼覆90°方向之不同種類纖維貼片,包括玄武岩纖維(Basalt Fiber)、碳纖維(Carbon Fiber)及混編纖維(Hybrid Fiber),希望成為拉力側破壞。改善既有梁構件破壞模式之前,需先瞭解不同FRP 材料及環氧樹脂砂漿之特性,FRP 之相關物理性質由材料商提供,環氧樹脂砂漿可藉由抗壓試驗得知。後續進行六組纖維複合梁試體之三點抗彎實驗,藉由各組試體實驗所得之極限載重、勁度、破壞模式等,與標準組相互比較,可知DWB 構件內部填充環氧樹脂砂漿之平均強度及勁度提升許多。於外部貼覆90°方向之纖維貼片後,強度提升且破壞模式改為拉力側破壞。最後將DWB 構件以數值分析軟體ANSYS 進行分析,將分析及實驗結果進行比較,進而修正並提出一FRP 纖維複合梁之分析模型。
論文英文摘要:This study presents the mechanical behavior of hybrid fiber reinforced plastic (HFRP) composite beam. There are two methods to increase the stiffness of pultruded glass fiber reinforced plastic (GFRP) beam and change the failure mode. First method is the GFRP beam filled with epoxy mortar. Second method is the GFRP beam wrapping different fiber sheet consisting of carbon fiber, basalt fiber and hybrid fiber. A series of beam tests will conduct under 3-point bending test to know the force-displacement relationship, stiffness, failure strength and failure mode of the GFRP beam. The Timoshenko beam theory and the finite element method were applied to analyze the profiles, using material properties estimated. Finally compare the experimental result, numerical and analytic result. Both results show the stiffness of GFRP beam filled with epoxy mortar is twice larger than GFRP beam, and the HFRP composite beam displays excellent strength.
論文目次:目 錄

中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 ix
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的及內容 3
第二章 文獻回顧 5
2.1 FRP複合梁之相關研究 5
2.2 FRP複合橋梁之相關案例 13
第三章 材料介紹與實驗規劃 21
3.1 FRP複合材料之介紹 21
3.1.1 FRP複合材料組成及特性 21
3.1.2 混編纖維複合材料之介紹 25
3.2 實驗材料 26
3.2.1 纖維貼片 26
3.2.2 GFRP梁構件斷面選擇 27
3.2.3 環氧樹脂 29
3.2.4 GFRP梁構件內部填充物測試 30
3.3 實驗規劃與編號 33
3.3.1 試體編號 33
3.3.2 環氧樹脂砂漿材料測試 35
3.4 混編纖維複合梁試體製作過程 36
3.4.1 填充環氧樹脂砂漿過程 37
3.4.2 纖維貼片貼覆過程 38
3.5 混編纖維複合梁之力學性質實驗 40
3.5.1 實驗方法 40
3.5.2 實驗設備 41
第四章 實驗觀察與結果 44
4.1 DWB原型梁構件實驗觀察與結果 44
4.2 DWB構件內填環氧樹脂砂漿之實驗觀察與結果 46
4.3 DWB構件內填環氧樹脂砂漿外層貼覆碳纖維貼片之實驗觀察與結果 49
4.4 DWB構件內填環氧樹脂砂漿外層貼覆玄武岩纖維貼片之實驗觀察與結果 53
4.5 DWB構件內填環氧樹脂砂漿外層貼覆混編纖維貼片之實驗觀察與結果 56
4.6 DWB構件外側貼覆混編纖維貼片之實驗觀察與結果 59
4.7 混編纖維合梁構件之實驗結果討論與破壞模式分析 61
第五章 有限元素模型建立與分析 65
5.1 有限元素分析架構 65
5.2 有限元素分析模型建立流程 66
5.2.1 元素型式、屬性及材料性質設定 66
5.2.2 有限元素模型之建立 67
5.2.3 邊界條件之設定 68
5.2.4 元素收斂性分析 69
5.3 數值分析結果 70
5.3.1 SB構件之數值分析結果 70
5.3.2 DWB構件之數值分析結果 71
5.3.3 不同長度DWB構件之數值分析結果 72
5.4 DWB構件內填環氧樹脂砂漿之計算結果 74
5.5 小結 77
第六章 結論與建議 79
6.1 結論 79
6.2 建議 81
參考文獻 84
論文參考文獻:參考文獻

[1] Burgoyne, C. J. and Head, P. R. (1993). “Aberfeldy Bridge-an Advanced textile Reinforced Footbridge.” Techtextil Syposium, No. 418, pp.1-9.
[2] Cheng, L. and Karbhari, V. M. (2006). “New Bridge System Using FRP Composites and Concrete: A State of the Art Review.” Wiley Inter Science, Vol. 8, pp. 143-154.
[3] Davalos, J. F., Salim, H. A., Qiao, P. and Lopez-Anido, R. (1996). “Analysis and Design of Pultruded FRP Shapes under Bending.” Composites Part B: 27B, pp. 295-305.
[4] Fam, A. and Honickman, H. (2010). “Built-up Hybrid Composite Box Girders Fabricated and Tested in Flexure.” Engineering Structures, No. 32, pp. 1028-1037.
[5] Gautam, B. P. and Matsumoto, T. (2009). “Shear Deformation and Interface Behavior of Concrete-Filled CFRP Box Beams.” Composite Structures, Vol. 89, pp. 20-27.
[6] Hejll, A., Täljsten, B. R. and Motavalli, M. (2005). “Large Scale Hybrid FRP Composite Girders for Use in Bridge Structures-Theory, Test and Field Application.” Composites Part B, No. 36, pp. 573-585.
[7] Hollaway, L. C. (2010). “A Review of the Present and Future Utilisation of FRP Composites in the Civil Infrastructure with Reference to Their Important In-Service Properties.” Construction and Building Materials, Vol. 24, pp. 2419-2445.
[8] Hai, N. D., Mutsuyoshi, H., Asamoto, S. and Matsui, T. (2010). “Structural Behavior of Hybrid FRP Composite I-Beam.” Construction and Building Materials, Vol. 24, pp. 956-969.
[9] Kumar, P., Chandrashekhara, K. and Nanni, A. (2004). “Structural Performance of a FRP Bridge Deck.” Construction and Building Materials, Vol. 18, pp. 35-47.
[10] Leo, B. (2009). “Design of a Fiber-Reinforced Polymer (FRP) Bridge.” University of New South Wales, Australian.
[11] Manalo, A. C., Aravinthan, T. and Karunasena, W. (2010). “Flexural Behavior of Structural Fibre Composite Sandwich Beams in Flatwise and Edgewise Positions.” Composite Structures, Vol. 92, pp. 984-995.
[12] Nordin, H., Taljsten, B. (2003). “Testing of Hybrid FRP Composite Beams in Bending.” Composites Part B: Engineering, No. 35, pp. 27-33.
[13] Neely, W. D., Cousins, T. E. and Lesko, J. L. (2004). “Evaluation of In-Service Performance of Tom’s Creek Bridge Fiber-Reinforced Polymer Superstructure.” Journal of Performance of Constructed Facilities, Vol. 18, No. 3, pp. 147-158.
[14] Neto, A. B. D. S. S. and Rovere, H. L. L. (2007). “Flexural Stiffness Characterization of Fiber Reinforced Plastic (FRP) Pultruded Beams.” Composite Structures, Vol. 81, pp. 274-282.
[15] Qiao, P., Davalos, J. F. and Brown, B. (2000). “A Systematic Analysis and Design Approach for Single-Span FRP Deck/Stringer Bridges.” Composites Part B 31, pp. 593-609.
[16] Seible, F., Karbhari, V. M. and R. Burgueno. (1999). “King’s Stormwater Channel and I-5/Gilman Bridge, USA.” Structural Engineering International, Vol. 9, No. 4, pp. 250-253.
[17] Senne, J. L. (2000). “Fatigue Life of Hybrid FRP Composite Beams.” MS Thesis. Virginia Polytechnic Institute and State University, USA.
[18] Schniepp, T. J. (2002). “Design Manual Development for a Hybrid, FRP Double-Web Beam and Characterization of Shear Stiffness in FRP Composite Beams.” MS Thesis, Virginia Polytechnic and State University, USA.
[19] Schumacher, A. and Herwig, A. (2010). “Design of FRP-Profiles and All-FRP-Structures,” Fiber Composites.
[20] Waldron, C. J. (2001). “Determination of the Design Parameters for the Route 601 Bridge: A Bridge Containing the Strongwell 36 in. Hybrid Composite Double Web Beam.” MS Thesis, Virginia Polytechnic Institute and State University, USA.
[21] Zhao, L., Burgueiio, R., Rovere, H, L., Seible, F. and Karbhari, V. (2000). “Preliminary Evaluation of the Hybrid Tube Bridge System,” Department of Structural Engineering University of California, San Diego.
[22] 北山 暢彦、宇野名右衛門,(2001),“伊計平良川線ロードパーク連絡歩道橋」の設計・製作・架設”, 石川島播磨技報 橋梁特集号,第62-419頁。
[23] ASTM D 695, Standard Test Method for Compressive Properties of Rigid Plastics.
[24] ASTM D 792, Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement.
[25] ASTM D 3410, Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials with Unsupported Gage Section by Shear Loading.
[26] CNS 4396 (ASTM D638) (JIS K7113),塑膠之抗拉性能試驗法。(Method of Test for Tensile Properties of Plastic.)
[27] CNS 4392 (ASTM D790) (JIS K7203),硬質塑膠之撓曲性能測定法。(Method of Test for Flexural Properties of Rigid Plastics.)
[28] CNS 13062 (ASTM D3776) (JIS K7071),碳纖維及環氧樹脂預浸材料檢驗法。(Methods of Test for Prepreg of Carbon Fiber and Epoxy Resins.)
[29] CNS 13065 (ASTM D2471) (JIS K 6833),環氧樹脂及硬化劑黏度測定法。(Methods of Test for Viscosity of Epoxy Resins and Hardeners.)
[30] 李祖添(2010),“國立臺北科技大學低碳綠能與生態社區聯合技術發展中心-99年成果報告書”,教育部補助技專院設置聯合技術發展中心計畫,第111-165頁。
[31] 李有豐,李俊德(2009),“FRP新材料 賦予橋梁新生命”,營建知訊,第315期,第55-66頁。
[32] 李有豐,李俊德,徐銘謙(2010) “活用科技材料 FRP替代性運用 高氯離子 結構物 修復新選擇”,營建新訊,第325期,第61-68頁。
[33] 李有豐、丁湘蘭(2002),“FRP橋面版結構分析與設計之研究”,第六屆結構工程研討會論文集,P05,屏東縣墾丁。
[34] http://www.youtube.com/watch?v=8e36gUTytjA
[35] http://www.compositeworldwide.com/CSS.html
[36] http://www.fiberline.com/structures/profiles-and-decks-bridges/profiles-footbridges-and-cycle-bridges/case-stories-footbridge/fiberline-bridge-kolding
[37] http://www.mdacomposites.org/mda/GlobalBridgesPEDESTRIAN.pdf
[38] http://www.fiberline.com/structures/profiles-and-decks-bridges/profiles-footbridges-and-cycle-bridges/case-stories-footbridge/pontresina-bridge-switzerla
[39] http://www.bceo.org/technology.html
[40] http://www.creativepultrusions.com/LitLibrary/products/superdeck/laurellickinstall.pdf
[41] http://www.gkdmetalfabrics.com/projects/lerida_bridge.html
[42] http://www.vectorgroup.com/pdfs/Aslan_FRP_Bridge_Project_List.pdf
[43] http://www.fhwa.dot.gov/bridge/ibrc/awrd2004.cfm
論文全文使用權限:同意授權於2011-08-08起公開