現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:非飽和土壤邊坡於人工降雨下暫態孔隙水壓力分佈之數值分析 [以論文名稱查詢館藏系統]
論文英文名稱:Numerical modeling of transient pore-water pressure distribution of an unsaturated soil slope under rainfall infiltration condition [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:99
出版年度:100
中文姓名:吳家賢
英文姓名:Chia-Hsien Wu 吳家賢
研究生學號:98428034
學位類別:碩士
語文別:中文
口試日期:2011-07-22
論文頁數:155
指導教授中文名:魏敏樺
口試委員中文名:盧之偉;吳博凱
中文關鍵詞:非飽和土壤邊坡降雨入滲基質吸力FlexPDE孔隙水壓
英文關鍵詞:unsaturated soilsloperainfall-infiltrationmatricsuctionFlexPDEpore water pressure
論文中文摘要:台灣屬於四面環海,高山林立之島嶼國家,面臨著土地狹小、蓄水不易與山林地邊坡土石流之困擾,因此邊坡破壞課題非常重要,每當雨季或颱風降雨豐沛時期往往造成地下水位急速升高或濕潤介面(wetting front)達到非飽和土壤區導致邊坡產生滑動面進而發生土石流或邊坡沖刷破壞。
本研究先以FlexPDE數值分析軟體模擬汙染傳播之虛擬案例,進而驗證此數值軟體的可靠性,接著模擬前人提出長2.5 m、寬1 m、高1.44 m之人工降雨模型邊坡實驗,比對實驗數據(含水量與孔隙水壓)與數值分析模擬值,並探討不同土水特性曲線與非飽和滲透係數的異向性對降雨邊坡之影響,最後以擬真邊坡探討設置不同排水孔對邊坡內部孔隙水壓消散與邊坡穩定性。模擬結果顯示濕潤介面首先入滲至不透水層,由於水無法再繼續入滲或排出導致水從不透水層往上累積,造成坡址開始產生掏刷引起後退式的淺層崩壞。初步模擬結果也顯示在邊坡坡面設置多排水孔能有效預防降雨邊坡中之孔隙水壓累積與邊坡水平位移。
論文英文摘要:The abundant rainfalls brought by typhoons and during prolonged rainy season have often resulted in the rapid rising of water table, which was presumably due to the infiltration and propagation of wetting front from the surface of the slope and through the unsaturated soil zone above the water table. As a result, shallow landslides have often been encountered during or after these prolonged rainfall periods. Therefore, to mitigate landslide problems, it is important to understand the mechanism of water infiltration and propagation of wetting front.
In this study, the partial differential equations involved in the transient flow of water in unsaturated soil medium have been solved using a numerical tool. The reliability of the numerical tool had been calibrated against published pollutant problems. The study then modeled a case history where a 2.5 m long by 1 m wide by 1.44 m high model slope was subjected to artificial rainfall. The numerical result was compared to the experimental data in terms of water content and pore-water pressure. The effects of different soil-water characteristic curves and anisotropic hydraulic conductivity on the patterns of wetting front were then examined. The patterns of pore-water pressure distribution in finite and infinite slopes were also compared.
論文目次:中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 xi
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究方法與內容 1
第二章 文獻回顧 5
2.1前言 5
2.2 降雨邊坡案例 6
2.3非飽和土壤體積變形與應變 8
2.4 非飽和土壤結構關係 9
2.4.1 非飽和土壤壓縮性方程式之表現 12
2.4.2 液相組合關係 13
2.5 非飽和滲流理論 15
2.6 平面應變狀態的耦合滲流控制方程 16
2.7 土壤水份特徵曲線 18
2.7.1 吸力定義 18
2.7.2 土水特徵曲線介紹 20
2.7.3 預測土水特徵曲線 22
2.8 非飽和土壤水力傳導係數 23
2.9 儲水方程式 (Water Storage Function) 24
第三章 FlexPDE介紹與案例分析 26
3.1 FlexPDE介紹 26
3.1.1邊界狀態 27
3.1.2 FlexPDE數值模型之建立 29
3.2 FlexPDE程式驗證 30
3.2.1 汙染傳播案例 30
3.2.2 汙染傳播機制 31
3.2.2.1 一維汙染傳播驗證案例 33
3.2.3 二維汙染傳播介紹 35
3.3 汙染於多孔介質傳播案例 36
3.3.1 小斷面持續注入汙染物 36
3.3.2 小斷面短期注入汙染物 38
3.3.3 不同土層與不同延散率 39
3.3.4 不同邊界條件汙染物傳播 42
3.3.5同流速且部分斷面注入汙染物經不同土層 45
3.4 簡易土石壩分析驗證 49
第四章 人工降雨於非飽和邊坡模擬 52
4.1 實驗設備與感測儀器 52
4.1.1 實驗流槽 52
4.1.2 人工模擬降雨設備 53
4.1.3 土壤水份感應系統 54
4.1.4孔隙水壓計 54
4.1.5資料收集器 55
4.2 室內邊坡模型試驗 56
4.2.1 邊坡模型 56
4.2.2試驗步驟 59
4.3 試驗土樣 61
4.3.1 物理試驗 62
4.3.2壓力鍋試驗介紹 63
4.3.3 南投眉溪河砂土水特徵曲線 65
4.3.4 南投眉溪河砂之儲水方程式與土體積變化方程式 67
4.3.5 南投眉溪河砂非飽和滲透係數 70
第五章 試驗與模擬結果討論 72
5.1 滲流分析流程 72
5.1.1 滲流偏微分方程式之整合 73
5.1.2 應力分析之方程式整合 75
5.1.3 自動化網格與其邊界狀態 77
5.2 實驗結果示意圖 79
5.3 現地土樣分析結果 86
5.3.1 邊坡飽和度分佈 86
5.3.2 土壤水份計 90
5.3.3 孔隙水壓計 93
5.3.4 雙軸荷重計 94
5.4 各參數之探討 96
5.4.1 異向性滲透係數探討 96
5.4.2 飽和度參數影響 99
5.5 修正飽和度曲線之分析結果 105
5.5.1 修正飽和度曲線之土壤水份計 105
5.5.2 修正飽和度曲線之孔隙水壓計 108
5.5.3 修正飽和度曲線之荷重計 109
第六章 降雨邊坡與排水模擬探討 112
6.1 有限邊坡之降雨入滲 112
6.1.1 邊坡降雨於水平地下水位面 113
6.1.2 邊坡降雨於傾斜地下水位面 117
6.2 無限邊坡 121
6.3 邊坡排水孔隨時間增加之模擬 125
6.4 設置邊坡排水孔模擬 132
6.3.1 降雨邊坡坡址單孔排水 132
6.3.2 降雨邊坡埋設多處排水孔 138
第七章 結論與建議 146
7.1 結論 146
7.2 建議 148
作者簡介 155
論文參考文獻:[1] Aitchison, G. D., and Csiro. (1965). Moisture equilibria and moisture changes in soils beneath covered areas: a symposium in print. Butterworths, South African Council for Scientific and Industrial Research, Sydney.
[2] ASTM D6836-02e2. (2008). "Standard Test Methods for Determination of the Soil Water Chararcteristic Curve for Desorption Using a Hanging Column, Pressure Extractor, Chilled Mirror Hygrometer, and/or Centrifuge." West Conshohocken. Pa.
[3] Bear, J., and Verruijt, A. (1987). Modeling groundwater flow and pollution. D. Reidel, Dordrecht.
[4] Berkowitz, B., Baer, J., and Braseter, C. "Continuum models for contaminant transport in fractured porous formations." Water Resources Research, 24(8), 1225-1236.
[5] Biot, M. A. (1941). "General Theory of Three‐Dimensional Consolidation." J. Appl. Phys., 12(2), 155-164.
[6] Brand, E. W. (1984). "Landslides in Southeast Asia, a State-of-the Art Report." Proceeding of the 4th International Symposium on Landslides, 17-59.
[7] Callister Jr., W. D. (1991). "Materials science and engineering: An introduction (2nd edition)." Mater Des, 12(1), 59-59.
[8] Childs, E. C., and Collis-George, N. (1950). "The Permeability of Porous Materials." Proceedings of the Royal Society of London.Series A, Mathematical and Physical Sciences, 201(1066), pp. 392-405.
[9] Das, B. M. (2007). Fundamentals of Geotechnical Engineering. Thomson Engineering.
[10] Fetter, C. W. (1994). Applied Hydrogeology. Macmillan Publishing Company, New York.
[11] Fetter, C. W. (1993). Contaminant Hydrogeology. Macmillan Publishing Company, New York.
[12] Fischer, H., List, E., Koh, R., Imberger, J., and Brooks, N. (1979). Mixing in inland and coastal waters. Academic Press.
[13] Fredlund D. G. and Xing A. (1994). "Equations for the soil-water characteristic curve." Canadian Geotechnical Journal, 31(4), 521-532.
[14] Fredlund D. G., Xing A., and Huang S. (1994). "Predicting the permeability function for unsaturated soils using the soil-water characteristic curve." Canadian Geotechnical Journal, 31(4), 533-546.
[15] Fredlund, D. G., and Morgenstern, N. R. (1976). "Constitutive relations for volume change in unsaturated soils." Canadian Geotechnical Journal, 13(3), 261-276.
[16] Fredlund, D. G. (1987). Slope Stability. John Wiley & Sons Ltd.
[17] Gardner, W. R. (1958). "Some Steady State Solution of the Unsaturated Moisture Flow Equation with Application to Evaporation Water Table." Soil Science, 85(4), 228-232.
[18] Gui, M. W. and Hsu, C. S. (2009). "Generalized fitting parameters of threr pedo-transfer functions for predicting water coefficient of permeability of lateritic soil." ASTM Geotechnical Test Journal, 32(5).
[19] Hillel D. (1982). Introduction to soil physics. Soil Sciences, University of Massachusetts, U.S.A.
[20] Hillel, D. (1980). Fundamentals of soil physics. Academic Press, Inc.(London) Ltd.
[21] Ho, P. G. "The Prediction of Hydraulic Conductivity from Soil Moisture Suction Relationship." B.Sc. the-Sis.
[22] Huyakorn, P. S., Broome, R. W., Lester, B. H., Kretschek, A. G., and Mercer, J. W. "SEFTRAN:A Simple and Efficient Transport Code." GeoTrans.
[23] Huyakorn, P. S., Kretschek, A. G., Broome, R. W., Mercer, J. W., and Lester, B. H. (1984). Testing and Validation of Models for Simulating Solute Transport in Ground-water. International Ground Water Modeling Center, Holcomb Research Institute, Butler University.
[24] Jacob Bear. (1988). Dynamics of Fluids in Porous Media. Courier Dover.
[25] Krahn, J., and Fredlund, D. G. (1972). "On Total, Matric and Osmotic Suction." Soil Science, 114(5), 339-348.
[26] Kreyszig, E. (2000). Advanced Engineering Mathematics. John Wiley & Sons, Inc.
[27] Lee, L. M., Kassim, A., and Gofar, N. (2011). "Performances of two instrumented laboratory models for the study of rainfall infiltration into unsaturated soils." Eng. Geol., 117(1-2), 78-89.
[28] Leij, F. J., and Dane, J. H. (1991). "The effect of transverse dispersion on solute transport in soils." Journal of Hydrology, 122(1-4), 407-422.
[29] Leong, E. C., and Rahardjo, H. (1997). "Review of Soil-Water Characteristic Curve Equation." Journal of Geotechnical and Geoenvironmental Engineering, 123(12).
[30] Lu, N., and Likos, W. J. (2004). Unsaturated Soil Mechanics. John Wiley and Sons.
[31] Lumb, P. (1975). "Slope Failures in Hong Kong." Quarterly Journal Engineering Geology, 8 31-65.
[32] Muntohar, A. S., and Liao, H. (2010). "Rainfall infiltration: Infinite slope model for landslides triggering by rainstorm." Nat.Hazards, 54(3), 967-984.
[33] Pereira, J. H. F. (1996). "Numerical Analysis of the Mechanical Behavior of Collapsing Earth Dams during First Reservoir Filling." PhD thesis, University of Saskatchewan, Saskatoon, Canada.
[34] Richards, L. A. (1931). "Cpaillary conduction of liquids through porous mediums." Journal of Applied Physics, 1(5), 318-333.
[35] Sudicky, E. A. (1989). "The Laplace Transform Galerkin Technique: A Time-Continuous Finite Element Theory and Application to Mass Transport in Groundwater." Water Resources Research, 25(8), 1833-1846.
[36] Thieu N. T. M., Fredlund M. D., Fredlund D. G., and Hung V. Q. (2001). "Seepage Modeling in A Saturated/Unsaturated Soil System." Land and Water Resources.
[37] van Genuchten, M. T. (1980). "A Closed-Equation for Predicting Hydraulic Conductivity of Unsaturated Soils." Soil Science Society of America Journal, 44(5), 892-898.
[38] Vu, H. Q. (2002). "Uncoupled and Coupled Solutions of Volume Change Problems in Expansive Soils." PhD thesis, University of Saskatchewan, Sakatoon, Canada.
[39] Wang, H., and Anderson, M. P. (1982). Introduction to groundwater modeling: finite difference and finite element methods. Academic Press, San Diego.
[40] Zhang, L. (2005). "Probabilistic study of slope stability under rainfall condition." PhD thesis, Hong Kong University of Science and Technology.
[41] 單信瑜, and 張良正. (2002). "非水相液體於非飽和地層中傳輸行為之特性." 地球系統科學研討會.
[42] 拱祥生. (1999). "降雨對不飽和土壤邊坡穩定性之影響研究." 碩士論文, 國立台灣科技大學, 台北.
[43] 林建輝. (2002). "土壤及地下水案例研討." 行政院環境護署水質保護處.
[44] 江銘緯. (2002). "地下水汙染傳輸延散係數之研究." 碩士論文, 國立成功大學資源工程研究所, 台南.
[45] 蔡長杰. (2009). "重質非水相液體入滲土壤地下水分佈之研究." 碩士論文, 逢甲大學環境工程與科學學系, 台中.
[46] 藍少村. (2008). "降雨導致淺層邊坡破壞之模型試驗與分析." 碩士論文, 國立成功大學土木工程研究所, 台南.
[47] 許俊森. (2006). "林口台地非飽和紅土滲透性質之研究." 碩士論文, 國立台北科技大學土木與防災研究所, 台北.
[48] 鄭雅仁. (2009). "台灣部分地區土壤水份特性曲線之預測." 碩士論文, 國立台北科技大學土木與防災研究所, 台北.
[49] 陳琮裕. (2010). "利用最佳化原理預測不飽和邊坡於人工降雨下之暫態孔隙水壓分佈." 碩士論文, 國立雲林科技大學營建工程系碩士班, 雲林.
[50] 陳進發. (2002). "未飽和層土壤水平衡模式解析及其應用之研究." 博士論文, 國立成功大學資源工程學系, 台南.
[51] 駱建利. (2009). "降雨導致邊坡破壞與土顆粒流出機制之研究." 博士論文, 國立成功大學土木工程研究所, 台南.
論文全文使用權限:同意授權於2014-08-18起公開