現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:以非破壞光學干涉術研探岩材於斜剪過程之破壞演化 [以論文名稱查詢館藏系統]
論文英文名稱:On the Evolution of Failure in Rocks Under Inclined Shear Test in Conjunction with Nondestructive Technique of ESPI [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:99
出版年度:100
中文姓名:買冠誠
英文姓名:Guan-Cheng Mai
研究生學號:98428026
學位類別:碩士
語文別:中文
口試日期:2011-07-12
論文頁數:233
指導教授中文名:陳立憲
口試委員中文名:黃燦輝;壽克堅;陳堯中
中文關鍵詞:電子斑紋干涉術(ESPI)非破壞檢測斜向剪切試驗儀預裂縫
英文關鍵詞:Electronic speckle pattern interferometry (ESPI)Nondestructive technique (NDT)Inclined shear test
論文中文摘要:囿於一般岩石直剪使用之封閉式剪切盒,僅能估求巨觀受剪行為及其強度參數c、ψ,而對微觀剪力破壞特徵如變形連續之叢聚與變形不連續之初裂和裂衍,則無法深入探究。本研究以自行研發斜剪試驗儀,採可視化剪力盒設計,並以非破壞檢測之電子斑紋干涉術(ESPI)進行開盒式試體表面之變形量測為主;並輔以聲射技術(AE)進行試體微裂震源之監測,冀能進一步研探岩材之微、巨觀破壞機制。
基於平面應變之受剪狀態下,藉由三大變數之訂定:(1) 岩材(天然岩材與人造類岩);(2) 斜剪角度(β= 65°、70°、80°);(3) 預裂縫之幾何形狀與方位(無預裂縫、版狀預裂縫及不同方位之版狀預裂縫、圓孔型、雙側預裂縫);並以裂縫開口位移作為施剪設備之回饋控制訊號,求得岩材峰前、峰後之完整加載歷程。
因電子斑紋干涉術具高精度(微米)且非接觸式之即時、全域性觀測等優點,並配合另一聲射技術比對材料破壞過程中之微震裂源定位。本研究計可研探: (1) 岩材之巨觀完整受剪歷程,亦即剪應力-剪變形曲線之峰前勁度、尖峰強度及峰後韌度之求算;(2) 研探岩材之三項微觀破壞演化特徵: 叢聚、初裂與裂衍。而本研究得知岩材之叢聚與初裂時機均發生於峰前,以剪角70度而言,叢聚時機約略於LL= 60~70%,初裂時機為70~80%之間,而峰後行為之裂衍中可發現水膠比高與圓狀顆粒偏向於穩定破壞(Class I),水膠比低與角狀顆粒偏向於不穩定破壞(Class II)。
最後利用聲射法研判其叢聚發生時機與位置,與電子斑紋干涉術所觀察之初裂及裂衍位置比對,發現兩者監測之破壞演化特徵頗為一致,證明可視化斜剪試驗建置之可行與適確。
論文英文摘要:Traditional direct shear test for rock can only obtain the macroscopic strength parameters since the closed-box design is unable to investigate the evolution of failure as well as the three main microscopic characterizations such as the localization during the stage of deformation continuity and crack initiation/propagation during deformation discontinuity. Therefore, a setup of a opened-box inclined shear test device with COD (crack opening displacement) control was designed and built to couple two nondestructive techniques simultaneously: ESPI (electronic speckle pattern interferometry) and AE (acoustic emission). The external and internal in-plane fracture behavior of rock materials subjected to shear can be probed by ESPI and AE, respectively.
In this study, the failure evolution of rocks under inclined shear test was studied mainly by ESPI, and was assisted by AE. Several key factors were also studied: rock types (natural and artificial rocks), inclined shear angle (β = 65°, 70°, 80°), pre-existing crack (location, shape, orientation).
ESPI has advantage with high precision (Micron), non-contact, and whole-field monitoring. In addition, AE is able to verify microseismic activities and their source locations. This study presents crucial functionalities: (1) A macroscopic complete loading curve including pre- and post-peak stiffness, shear strength at peak, and post-peak toughness of rock was obtained quantitatively. (2) Three main microscopic characteristics for the evolution of fracture in stressed rock can be evaluated. That is, localization, crack initiation and propagation were examined respectively. Experimental results also show that both localization and crack initiation occurred prior to the peak. Localization takes place at about 60 to 70 % of load level while crack initiation at about 70 to 80 % for the case of shear angle 70°. Moreover, “class I” post peak behavior can be found in higher water-to-binder ratio and rounded particles whereas the low water-to-binder ratio and angular particles tend to “class II” unstable response posterior to peak.
By comparing the results of nondestructive techniques of ESPI and AE, the evidence of damaged development from ESPI was consistent with the measurement of AE. The feasibility and correctness of the inclined shear device was approved.
論文目次:誌 謝 i
摘 要 ii
ABSTRACT iii
目 錄 v
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究範圍與方法 2
1.3 研究內容與架構 3
第二章 文獻回顧 5
2.1 斜向剪切試驗 5
2.1.1 斜向剪切試驗之沿革 5
2.1.2 斜向剪切試驗之創新 6
2.2 斜向剪切試驗之破壞模式 7
2.2.1 脆性破壞理論 7
2.2.2 強度與變形關係 8
2.2.3 剪力試驗破壞型態 9
2.2.4 粗糙角之定義與求算 11
2.3完整加載歷程與微-巨觀破壞演化 15
2.3.1 完整加載歷程 15
2.3.2 加載歷程峰後曲線類型 17
2.3.3 微-巨觀破壞演化(三)特徵 18
2.4 線彈性破壞力學沿革與應用 21
2.4.1 理論發展 21
2.4.2 Griffith能量平衡理論 23
2.5 非破壞檢測-電子斑紋干涉術(ESPI)沿革與應用 25
2.5.1 光測力學基本理論 25
2.5.2 電子斑紋干涉術 26
2.5.3 斑點效應特性 27
2.5.4 面內位移系統 28
2.6非破壞檢測-聲射(AE)技術之原理與應用 31
2.6.1 聲射定位原理 31
2.6.2 聲射技術定位準則 32
第三章 試驗架構與執行 34
3.1 試驗材料 35
3.1.1 人造類岩之製作 36
3.1.2 天然岩材之種類 42
3.1.3 基本力學試驗及結果 43
3.2 試驗儀器設備 46
3.2.1 萬能油壓伺服系統 46
3.2.2 斜剪試驗設備 48
3.2.3 電子斑紋干涉術(ESPI)儀器 51
3.2.4 聲射(AE)儀器 56
3.3 試驗方法與流程 58
3.3.1 伺服系統校正 58
3.3.2 非破壞性聲-光檢測校正 59
3.3.3 斜向剪切破壞試驗步驟 60
3.3.4 試驗參數說明 62
第四章 試驗成果與分析 63
4.1 斜剪試驗之成果 67
4.2 斜剪試驗之巨觀影響 69
4.2.1 剪角對巨觀加載歷程之影響 69
4.2.2 顆粒材對巨觀加載歷程之影響: 勁度、強度、韌度 72
4.2.3 膠結材對巨觀加載歷程之影響 74
4.2.4 膠結材對巨觀裂縫之影響 75
4.2.5 預裂縫對巨觀加載歷程之影響 77
4.2.6 不同天然岩材之巨觀加載歷程 79
4.2.7 粗糙角之求算 80
4.3 斜剪試驗之微觀影響 81
4.3.1 剪角對岩材微觀裂縫之空間分佈 81
4.3.2預裂縫微觀裂縫之空間分佈 86
4.3.3 剪角對試體微觀裂隙之時間分佈 91
4.4 初裂至尖峰強度發展之裂衍特徵 92
第五章 結論與建議 99
5.1 結論 99
5.1.1 斜向剪切試驗儀 99
5.1.2 巨觀破壞行為 99
5.1.3 微觀破壞行為 100
5.1.4 非破壞檢測之耦合 101
5.2 建議 102
5.2.1 試驗材料之建議 102
5.2.2 剪力破壞實驗建議 102
5.2.3 非破壞性光學干涉術之建議 103
參考文獻 104
附錄A 實驗相關圖片 107
附錄B 微觀裂隙之時間、空間分佈試驗數據 (ESPI and AE) 111
附錄C 委員意見回覆表 228
符號對照表 231
中英文縮寫對照表 233
論文參考文獻:[1] 小林英男,「破壞力學」,龍璟文化,台北 (2002)。
[2] 巫奇穎,「同步化聲光非破壞檢測岩探類岩材料於貫切破壞之群刀效應」,碩士論文,國立台北科技大學土木工程系,台北 (2008)。
[3] 李昶佑,「應用電子點紋干涉術探討岩石貫切過程之破壞演化及破裂特徵」,碩士論文,國立台北科技大學土木工程系,台北 (2006)。
[4] 林佑珊,「以光學干涉岩探類岩粒徑大小與形狀於壓、剪過程破壞演化」,碩士論文,國立台灣科技大學營建工程系,台北 (2010)。
[5] 林雍勝,「岩石貫切破壞之圍壓與刀楔影響及其對應之聲射演化」,碩士論文,國立台灣科技大學營建工程系,台北 (2006)。
[6] 胡光宇,「複合式非破壞檢測佐探類岩材料於單刀與雙刀貫切之破壞機制」,碩士論文,國立台北科技大學土木工程系,台北 (2007)。
[7] 洪啟德,「岩石之模擬材料與其直接剪力破壞模式之研究」,碩士論文,國立台灣大學土木工程學系,台北 (1989)。
[8] 黃兆龍,「混凝土性質與行為」,詹氏出版社,台北 (1997)。
[9] 黃國忠,「應用聲射法與分離元素法探討擬脆性岩材破壞機理之研究」,博士論文,國立台灣科技大學營建工程系,台北 (2008)。
[10] 彭國維,「以聲射技術岩探類岩粒徑大小與形狀於壓、剪過程破壞特徵」,碩士論文,國立台灣科技大學營建工程系,台北 (2006)。
[11] 張來福,「模擬岩石裂隙延伸行為之初探」,碩士論文,國立台灣大學土木工程系,台北 (2008)。
[12] 楊文欣,「非破壞性聲光同步技術佐驗類岩斜剪試驗之剪角影響與預裂效應」,碩士論文,國立台灣科技大學營建工程系,台北 (2010)。
[13] 楊長義,模擬規則節理面岩體強度與變形性之研究,博士論文,國立台灣大學土木工程研究所,台北 (1992)。
[14] 蔡昇哲,「應用非破壞檢測之聲射法於岩石貫切破壞試驗之探討」,碩士論文,國立台灣科技大學營建工程系,台北 (2005)。
[15] 劉信良,「複合式非破壞檢測於類岩斜剪過程之巨微觀破壞演化」,碩士論文,國立台灣科技大學營建工程系,台北 (2008)。
[16] 劉峵瑋,「以非破壞耦合試驗研探類岩材料受楔形貫切破壞之側向自由邊界效應」,碩士論文,國立台灣科技大學營建工程系,台北 (2007)。
[17] 魏德禎,「岩石斜向剪切試驗暨其聲光非破壞檢測之佐驗」碩士論文,國立台灣科技大學營建工程系,台北 (2008)。
[18] Barton, N. R. "A Relationship Between Joint Roughness and Joint Shear Strength," Proc. Intl. Sym. Rock Fracture, Nancy , France, pp.1-8 (1971).
[19] Bieniawaki, Z. T., "Stability Concept of Brittle Fracture Propagation in Rock, " Engineering Geology, No.2, pp. 149-162(1967).
[20] Biolzi, L., Pedala, S. and Labuz, J. F., "Mechanical Characterization of Natural Building stone," Degradation of Naturial Building Stone, Geotechnical Special Publication, ASCE, No.72, pp.33-41(1999).
[21] Bray, D. E., and McBride, D., "Acoustic Emission Technology, Nondestructive Testing Techniques," New York, pp. 345-377 (1992).
[22] Butters, J. N and Leendertz, J. A., "Holographic and Video Techniques Applied to Engineering Measurements," Transactions of the Institute of Measurement and Control, ”Vol. 4, pp. 349-354 (1971).
[23] Chen, L. H., "Failure of Rock Under Normal Wedge Indentation," Ph. D. Thesis, University of Minnesota, USA (2002).
[24] Chen, L. H. and Labuz, J. F., "Indentation of Rock Failure by Wedge-Shaped Tools," International Journal of Rock Mechanics and Mining Sciences, Vol. 43, pp. 1023-1033 (2006).
[25] Everling, G., "Comment Upon the Definition of Shear Strength," International Journal of Rock Mechanics and Mining Sciences, Vol. 1, pp.145-154 (1964).
[26] Gabor, D., "A New Microscopic Principle," Nature, Vol.161, pp.777-778 (1948).
[27] Goodman, R. E., "Introduction to Rock Mechanics," 2nd edition, John Wiley & Sons, New York (1989).
[28] Griffith, A. A., "The Phenomena of Rupture and Flow in Solids," Philosophical Transactions of the Royal Society. London A221, Vol. 221, pp 163-197 (1921).
[29] Irwin, G. R., "Analysis of Stresses and Strain Near the End of a Crack, " Trans. ASME, Journal of Applied Mechanics., Vol. 24, pp.361-364(1957).
[30] Lajtai, E. Z., "Mechanics of Second Order Faults and Tension Gashes," The Geological Society of America. Vol. 80, pp. 2253-2272 (1969).
[31] Leith, E. N. and Upatnieks, J., "Reconstructed Wavefronts and Communication Theory," Journal of the Optical Society of America., Vol. 52, pp.1123-1130(1962).
[32] Maji, A. K., Wang., J. L, and Lovato, J., "Electronic Speckle Pattern Interferometry for Fracture Mechanics Testing," Experimental Techniques, Vol.15, No. 3, pp.19-23 (1991).
[33] Moore, A. J. and Tyrer, J. R., "An Electronic Speckle Pattern Interferometry for Complete In-plane Displacement Measurement," Measurement Science and Technology, Vol. 1, pp. 1024-1030 (1982).
[34] Patton. B. and Gangal, M., "Multiple Modes of Shear Failure in Rock," Proc. 1st. Intl. Cong. Rock Mechanics , Libon, Vol.1, pp.509-513. (1966).
[35] Wawersik, W. R. "Detailed Analysis of Rock Failure in Laboratory Compression Test," Ph.D. Thesis , Department of Civil & Mineral Engineering , University of Minnesota , Minneaplois , Minnesota. (1968).
[36] Yang, Z. Y., "Qualitative Study on the Regularly Stick-Slip Shear Behavior of Ellipitical Particles," Tamkang Journal of Science and Engineering, Vol. 1, No. 1, pp. 14-19(1998).
論文全文使用權限:同意授權於2013-08-24起公開