現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:結合用水量時空分佈之計量小區管網模擬 [以論文名稱查詢館藏系統]
論文英文名稱:A DMA network simulation under temporal and spatial distribution of water demands. [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:99
出版年度:100
中文姓名:時佳麟
英文姓名:Chia-Lin Shih
研究生學號:98428525
學位類別:碩士
語文別:中文
口試日期:2011-07-08
論文頁數:123
指導教授中文名:張哲豪
口試委員中文名:陳偉堯;吳祥禎
中文關鍵詞:自來水管網漏水管理計量小區DMAEPANET住宅用水量相關性非常態多變數蒙地卡羅法蒙地卡羅模擬漏水復發防制Johnson機率分佈
英文關鍵詞:Water pipe networkleakage managementDistrict Metered AreaDMAMonte Carlo simulationEPANETresidential water demandleakage controlJohnson distributionCorrelated non-normal multivariate monte carlo simulaiton
論文中文摘要:在全球暖化氣候異常的今天,水不再是取用不盡的資源,自來水事業單位應積極進行漏水管理,提升供水效能及降低損漏情形。計量小區(District Metered Area, DMA)是2001年國際水協會(International Water Association, IWA)推動漏水管理策略與方法之一,歐美、日本及臺灣都已有不錯的推動績效。
本論文整理自來水國內外漏水管理的相關文獻,整理說明DMA起源、定義及理論發展,確認計量小區(DMA)是漏水管理重要工作。但管理小區則需要有效率的整合工具,在地理資訊系統(GIS)圖資及監控系統(SCADA)即時資訊外,另一項重要工具就是管網分析軟體,利用水量、壓力及管網拓樸,模擬不同的管網情形評估管理應對措施,可加強小區不確定性的風險管理。
住宅用水量為管網分析來源資料之一,有別於過去的研究,本文利用時間精度較高的小區監測流量,彌補時間精度不佳但空間精度較高的住宅水表抄表量,結合二種尺度流量與Johnson機率分佈,在質量守恆定律下,應用相關性非常態多變數蒙地卡羅法(CNMMCS),模擬計算住宅用水量每小時的用水情形,經由案例研討及小區應用的驗證,確認模擬用水量的模型分佈的可行性。
另外結合模擬水量及蒙地卡羅法,本文提出管網分析軟體EPANET在大量資料模擬增進效率的方法。經由各個節點的壓力變化及水頭損失的統計特性,探討小區內不同漏水情形發生的壓力變化,說明小區管理上的應用。
論文英文摘要:Climate anomalies in global warming today, the water are no longer the inexhaustible resources. Water Company should be actively managed in leakage control, improve performance of water supply and reduce the loss of water leakage conditions. Since 2001, District Metered Area (DMA) had been promoting to be one of the leakage management strategies and methods in International Water Association (IWA). Europe, Japan and Taiwan already have a good drive performance.
We had searched the development of water pipe network, residential water demand, pressure, and leakage management of domestic and foreign literature. Regarding for the definition, theory, and development of the DMA are finishing instructions systematically. Confirm DMA is an important work of leakage management. But we need an efficient management of residential integration tools, geographic information system (GIS) and monitoring system (SCADA), but another important tool is the pipe network analysis software, the use of water, pressure pipe network topology to simulate different situations pipeline management response assessment, uncertainty can strengthen the risk management.
As residential water demand for the pipe network analysis, unlike past research on water consumption, this paper use the data of flow meter with high precision, and the data of residential water meters with less time accuracy but the higher spatial precision, combined with this two kinds of flow data and the Johnson probability distributions under the law of conservation of mass, apply with Correlated non-normal multivariate Monte Carlo simulation (CNMMCS) and simulated the case of residential water demands per hour. Residential applications through case studies of verification, validation this simulated model of water distribution is feasible.
We also presents a method in combination with water demand and Monte Carlo simulation, to increase efficiency of EPANET analysis in large data process. Through the statistical properties of pressure and head loss of nodes, to discuss the pressure change occurred in different leakage case on the DMA.
論文目次:中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 x
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的與流程 1
1.3 研究方法 2
1.4 研究範圍與限制 3
1.5 文獻回顧 3
1.5.1 自來水配水管網的發展 4
1.5.2 用水量 5
1.5.3 壓力 11
第二章 漏水管理與計量小區探討 16
2.1 漏水管理 16
2.1.1 日本的漏水管理 16
2.1.2 英國的漏水管理 18
2.1.3 國際水協會(IWA)漏水管理 19
2.1.4 臺北自來水事業處的漏水管理 21
2.2 計量小區起源與定義 23
2.3 計量小區理論 25
2.3.1 漏水量的組成 25
2.3.2 漏水維修工作 26
2.3.3 夜間最小流量 27
2.3.4 壓力管理 29
2.3.5 管線更新 30
2.3.6 長期管理防止漏水復發 31
2.4 計量小區管理 32
第三章 住宅用水量模擬 34
3.1小區流量計流量 34
3.2住宅水表用水量 35
3.3時空分佈特性 35
3.3.1 時間分佈特性 36
3.3.2 質量守恆特性 38
3.3.3 隨機機率特性 40
3.4用水量模擬 35
3.4.1 Qsd(x)模擬 41
3.4.2 住宅用水量與Johnson機率分佈模型 43
3.4.3 P(t)模擬 47
3.4.4 Qsh(x,t)計算 49
3.5管網分析模擬(MCS-EPANET) 49
3.5.1 EPANET管網分析軟體 50
3.5.2 EPANET的非圖形化界面 51
3.5.3 EPANET物理模式及設定 52
3.5.4 MCS-EPANET模擬流程 56
第四章 案例研討 58
4.1 案例基本資料 58
4.2 每只水表小時用水量模擬 64
4.2.1 模擬Qsd(x)用水量 64
4.2.2 流量比率P(t)值模擬 68
4.2.3 水表每小時用水量Qsh(x,t)模擬 70
4.3 模擬用水量應用-小區管網模型分析 73
4.3.1 小區管網模型建置 73
4.3.2 模擬用水量造成的壓力變化 78
4.3.3 模擬漏水量造成的壓力變化 83
4.3.4 現場驗證作業 96
第五章 結論與建議 102
5.1 結論 102
5.2 建議 103
參考文獻 104
附錄A 案例小區水表統計特性 108
附錄B 案例小區P(t)值 111
附錄C 案例小區無漏水情形之水頭損失 119
符號彙編 122
論文參考文獻:[1]吳錦棖,楊長義,提昇自來水售水率之小區計量運用,淡江大學土木工程所碩士論文,2005
[2]俞立平,石晉方,台北自來水以小區計量降低無計費水量之研究,中華大學營建管理碩士論文,2007
[3]莊立偉,高正忠,自來水測漏小區管網劃分程序及優選模式,國立交通大學環境工程系所碩士論文,2008
[4]陳昭仁,盧重興,台灣地區自來水管線漏水計量之探討,中興大學環境工程系所,2009
[5]張文亮,河馬教授的網站/歷史故事/水的故事,<錯誤! 超連結參照不正確。>, (2011年5月8日)
[6]法務部全國法規資料庫工作小組,“自來水法”,全國法規資料庫入口網站,, (2011.5.1)
[7]劉祥熹,周海龍,台北都會生活用水量之模式建構與模擬—類神經網路模式之應用,農業經濟半年刊,71期第77-112頁,2002
[8]許盈松,郭雅熅,陳昶憲,葉昭憲,王國樑,台灣地區生活用水量推估研究,農業工程學報 第54卷第4期,第33-43頁,2008
[9]鍾寬茂,(經濟部水利署2008),台灣地區生活用水需求量之預測推估與應用,水利署研究計畫,,(2011年5月8日)
[10]鍾寬茂,(經濟部水利署2009),台灣地區生活用水需求量之預測推估與應用,水利署研究計畫,,(2011年5月8日)
[11]林惠玲,陳正倉,應用統計學二版,臺北:雙葉書廊有限公司,2005
[12]維基百科,中央極限定理,,(2011年5月8日)
[13]中華人民共和國住房和城鄉建設部,城鎮供水廠運行、維護及安全技術規程(CJJ58-2007),2007
[14]中華人民共和國住房和城鄉建設部,城鎮供水服務法(CJ/T316-2009),2010
[15]內政部,自來水工程設施標準(92年12月3日修訂),臺北:全國法規資料庫,,(2011年5月2日)
[16]內政部,救火栓設置標準(92年9月10日修訂),臺北:全國法規資料庫,,(2011年5月2日)
[17]時佳麟,張哲豪,蒙地卡羅模擬法及EPANET評估自來水管網風險之探討-以小區規劃封閉時消防需求為例,臺北,2010
[18]林顯泰、史午康、詹焜耀、時佳麟,赴美國考察自來水配水管網水質維護及利用自來水管線地理資訊系統管理設備與支援決策心得報告,臺北,2004
[19]林子立,吉貝分區計量(DMA)與防漏實務,臺北:自來水會刊第30 卷第1 期第63-70頁,2011
[20]王桑貴、陳明仕、鄭答振,考察英國流量計技術在測漏上的應用、漏水管理監控技術等相關作業心得報告,臺北,2010
[21]臺北自來水事業處,管網改善計畫計畫介紹,< 錯誤! 超連結參照不正確。>,(2011年5月2日)
[22]周國鼎,台灣地區全面建置分區計量管網之策略,臺中,2009
[23]時佳麟,李峰杰,姚榮昇,蔡淑惠,劉人嘉,臺北自來水事業處管網E化現況與未來發展,水產業研討會,臺北,2006
[24]日本東京都水道局(2010), “Leakage Prevention Guidebook”, <錯誤! 超連結參照不正確。>, (May. 8, 2011)
[25]日本守口市水道局(2011), “給水裝置工事施行基準”, <錯誤! 超連結參照不正確。>, (May. 8, 2011)
[26]日本宮崎県都城市政府(2010), “都城市3階までの建築物における直結給水のための給水裝置の構造・設計施工等に関する基準”, , (May. 8, 2011)
[27]日本東京都水道局(2006), “Tokyo Waterworks Principal Vision STEPⅡ-Safe Waterworks”,Digest Version November,<錯誤! 超連結參照不正確。>, (May. 8, 2011)
[28]日本宮崎県都城市市政府(2006) “都城市水道事業給水条例施行規程”, , (May. 8, 2011)
[29]日本茨城県鹿嶋市市政府(1998),“鹿嶋市水道事業指定給水装置工事事業者規程”, , (May. 8, 2011)
[30]日本埼玉県草加市市政府(2006)“直結増圧給水設計施工基準”, , (May. 8, 2011)
[31]日本東京都水道局(2010), “事業概要平成22年版”, , (May. 8, 2011)
[32]Yamanaka and Buchberger el.(2008), “Stochastic modeling of residential drinking water demand using the Neyman-Scott scheme”
[33]Alegre, H., Hirner, W., Baptista J.M. and Parena R. (2000) Performance Indicators for Water Supply Services. IWA Manual of Best Practice. ISBN 900222272
[34]Alvisi, S., Franchini, M. and Marinelli, A.(2003),“A Stochastic Model for Representing Drinking Water Demand at Residential Level”, Water Resources Management 17: 197–222
[35]Barreto, D., Pedroso, V. and Chahim, R.(2010) “Depicting residential night flow”, Water Loss 2010, São Paulo, Brazil.
[36]Brothers, K.(2003). A practical approach to Water Loss Reduction. Water21, June, 54-55
[37]Buchberger, S.G. and Wu, L.(1995), “A model for instantaneous water demend.”, J. Hydraulic Eng.121(3):232-246.
[38]Buchberger, S.G. and Wells, G.J. (1996) “Intensity, duration and frequency of residential water demend.” J. Water Resources Planning and Management 122(1):11-19.
[39]Clark, R.M. and Buchberger, S. G.(2004), “Responding to a contamination threat in a drinking water network: the pontentail for modeling and monitoring. Pp 9.1-9.26 In:Water Supply Systems Security. L.W. Mays(ed.). New York: McGraw-Hill.
[40]Cowpertwait, P. S. P.: 1991, ‘Further developments of Neyman-Scott clustered point process for modelling rainfall’, Water Resour. Res. 27 (7), 1431–1438.
[41]Cowpertwait, P. S. P.: 1994, ‘A generalized point process model for rainfall’, Proc. R. Soc. Lond., Series A, 447, 23–37.
[42]Cowpertwait, P. S. P.: 1995, ‘A generalized spatial-temporal model of rainfall based on a clustered point process’, Proc. R. Soc. Lond., SeriesA, 450, 163–175.
[43]Cowpertwait, P. S. P., O’Connell, P. E. O., Metcalfe, A. V. and Mawdsley, J. A.: 1996a, ‘Stochastic point process modelling of rainfall, I. Single-site fitting validation’, J. Hydrol. 175, 17–46.
[44]Cowpertwait, P. S. P., O’Connell, P. E. O., Metcalfe, A. V. and Mawdsley, J. A.: 1996b, ‘Stochastic point process modelling of rainfall, II. Regionalisation and disaggregation’, J. Hydrol. 175, 47–
[45]Health Research Inc.(2007) “10 States Standards -Recommended Standards for Water Works - ”, A Report of the Water Supply Committee of the Great Lakes, , (May 2, 2011)
[46]Hirner, W and Lambert, A.(2000), Losses from Water Supply Systems: Standard Terminology and Recommended Performance Measures. IWA Website,
[47]Huang, C. L. and Yang, C. W. (2009), “Analyzing the Leakage of System from Flow Signals by Probability Approach”, The 3rd IWA-ASPIRE Conference and Exhibition, October 18-22, 2009 Taipei, 47-48
[48]Hutchinson, T. P., and Lai, C. D. (1990). “Continuous Bivariate Distributions, Emphasizing Applications”, Rumsby Scientific Publishing, Adelaide, South Australia.
[49]Johnson, N. L., and Kotz, S. (1976). “Distributions in Statistics: Continuous Multivariate Distributions”, John Wiley and Sons, New York.
[50]Lambert, A.(2003), “Assessing Non-Revenue Water and its Components: A Practical Approach”, The second in a special series of articles for Water21 by the IWA Water Loss Task Force.
[51]Morrison, J.(2004) “Water Loss Managing leakage by District Metered Areas” , The 5th in a special series of articles for Water21 by the IWA Water Loss Task Force. p44-46
[52]Nation, S. S.(2006). “Potential Water Distribution System Pressure Zone Layout And Preliminary Review of Fireflow Requirements (DRAFT)” Feasibility Study for Water Supply System, Department of the Interior Bureau of Reclamation, U.S.A.
[53]OFWAT(2004), “Updating the overall performance assessment (OPA) –Conclusions and methodology for 2004-05 onwards”, 34
[54]Thornton, J.(2003), “Managing Leakage by Managing Pressure”, The 2nd in a special series of articles for Water21 by the IWA Water Loss Task Force.
[55]Walski, T. M., D. V. Chase, D.A. Savic, W. M. Grayman, S. Beckwith and E. Koelle.(2003), “Advance Water Distribution Modeling and Management.”, Waterbury, CT: Heastad Press.
[56]Water Research Centre (1984), “Leakage Control Policy & Practice”, Water Authorities Association, ISBN 0 904561 95 X
[57]Water Research Centre (1994), “UK Water Industry Managing Leakage”, Engineering & Operations Committee Reports A- J
[58]Wu, S. J., Tung, Y. K. and Yang, J. C.(2006), “Stochastic generation of hourly rainstorm events”, Stochastic Environmental Research and Risk Assessment, Volume 21, Number 2, 195-212, DOI: 10.1007/s00477-006-0056-3
論文全文使用權限:同意授權於2011-08-22起公開