現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:應用土壤水分及氮平衡耦合模式評估坡地水稻田氮汙染潛勢 [以論文名稱查詢館藏系統]
論文英文名稱:Applying a coupled soil water and nitrogen balance model to evaluate nitrogen contamination potential of paddy field on slope land [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:99
出版年度:100
中文姓名:陳昆宏
英文姓名:Kun-Hung Chen
研究生學號:98428075
學位類別:碩士
語文別:中文
口試日期:2011-07-15
論文頁數:62
指導教授中文名:陳世楷
口試委員中文名:朱子偉;張誠信;王聖瑋
中文關鍵詞:非點源汙染氮平衡模式水收支化肥
英文關鍵詞:Nonpoint source pollutionN-balancewater balancechemical fertilizers
論文中文摘要:農業活動為重要之非點源汙染來源,大量使用化學肥料對環境的負面影響近年來逐漸顯現。而集約式施肥易導致氮素汙染地下水和地表水,不僅造成環境和生態破壞,對人類健康亦造成潛在性之危害。
水稻為台灣主要作物,其每年期作面積高達25萬公頃以上,在農業作物的化學肥料消耗量中占極大的比例。水稻在種植期間多保持湛水狀態,施用化學肥料時經過氮素轉化過程,其中產生之硝酸鹽氮可藉由滲漏到達地下水或藉由降雨逕流及排水進入其他地表水體。本研究根據現地監測資料發展驗證水田及氮平衡耦合模式,模式考量水田根系土壤及湛水層之氮素轉化過程,如化肥水解、硝化、脫硝、揮發、礦化、固定、植物吸收及滲透淋洗等。以新竹縣新埔水稻田實驗田區2010年兩次期作田區排放之逕流水質硝酸鹽氮濃度進行模式檢定與驗證,其判定係數R2分別為0.95及0.012,驗證結果不佳導因於兩期作在基肥施用期間,排水之硝酸鹽氮濃度存在極明顯之差異,可能係一期作初期低溫造成硝化作用速率下降所致。建議模式之模擬應將溫度效應納入考量,同時利用更長期之觀測資料修正驗證此一模式。利用二期作經過檢定之模式模擬水稻田不同施肥量對周邊水體之氮污染潛勢,當施用氮肥量達200kg/ha時,對地表逕流及地下水之汙染負荷均仍在2kg/ha以下,遠低於揮發及脫硝作用逸失之氮量,顯示水田施肥之硝酸鹽氮汙染潛勢並不高,研究成果可提供作為農業非點源控制及評估農業迴歸水再利用之參考依據。
論文英文摘要:Agriculture activities are probably the most significant anthropogenic non-point pollution source. In recent years, the intensive application of chemical fertilizers in a large amount is responsible for the negative impact on the environment gradually. Nitrogen contamination in both groundwater and surface waters, resulting in the environmental and ecological destruction, and may pose potential hazards to human health.
Paddy rice is the main crop with the cultivation area about 0.25 million ha per year in Taiwan, accounts for a significant share of fertilizer consumption among agriculture crops. Losses of nitrate from applied chemical fertilizer may be high from paddy fields as they are in flooded condition for most of the cropping period. Nitrate is soluble and moves with the water percolating to groundwater or leave out by drainage or runoff. In order to evaluate the contamination potential of nitrate-N, a nitrate and water budget model includes all the important N-transformation process such as fertilizer hydrolysis, nitrification, denitrification, volatilization, mineralization, immobilization, plant uptake, and percolation that occur in both soil and pounding water for paddy field is established in this study. The model was calibrated and validated by in-situ data of fertilizer application rate, water budget measurement and water quality analyses continued for two crop periods in Hsin-pu experimental paddy field located at Hsin-chu County, north Taiwan. Model simulation results indicate that coefficient of determination (R2) for two crop periods are 0.95 and 0.012, respectively, which is not well enough to pass the verification standard due to the significance difference between the first crop and the second crop on the nitrate concentration of drainage water during the early stage of basal fertilizer application. Low temperature during the early stage of the first crop may reduce the the rate of nitrification which result in the low nitrate concentration of drainage water. It is suggested that the factor of temperature should be taken into account for mode simulation, and long-term monitor on water quality is necessary to improve the effectiveness of this model. Applying the model to simulate the nitrate load from drainage water during the second crop period and assume the fertilizer application rate increase from 120kgN/ha to 200kgN/ha, the results show that both of nitrate loss from drainage and from percolation are smaller than 2kgN/ha, far below the N loss from denitrification and volatilization. It can be confirmed that fertilizer application of paddy field not the main non-point pollution source and the potential pollution load could be reduced by well drainage water control and rational fertilizer management. This research can apply a basis for non –point pollution control and assessing the re-use of agricultural return flow in paddy field.
論文目次:摘要 I
ABSTRACT II
目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
1.1 研究動機 2
1.2 研究目的 2
第二章 文獻回顧 3
2.1 水稻田水收支及氮平衡模式相關文獻 3
2.2 水稻田合理化施肥 10
2.3 迴歸水定義與分類 12
第三章 研究方法 14
3.1 研究區域 14
3.2 水稻田水收支 16
3.2.1 蒸發散量 17
3.2.2 入滲量 18
3.2.3降雨量 18
3.2.4 灌溉水量及排水量 19
3.3 水稻田氮平衡模式 19
3.3.1 尿素水解 23
3.3.2 揮發作用 23
3.3.3 硝化作用 24
3.3.4 礦化作用 24
3.3.5 固定作用 25
3.3.6 脫硝作用 25
3.3.7 植物吸收 26
3.3.8 垂向滲漏 26
3.4 檢定與驗證 27
3.4.1 效率係數 28
3.4.2 判定係數 29
3.4.3 驗證 30
第四章 結果與討論 31
4.1 實驗田區灌溉水及出流口逕流氮素濃度實測結果 31
4.1.1 一期作灌溉出口逕流水質監測分析 31
4.1.2 二期作灌溉出口逕流水質監測分析 33
4.2 水收支結果 34
4.2.1 一期作水收支 35
4.2.2 二期作水收支 36
4.3 田區施肥量調查 38
4.4 氮平衡模式參數檢定 39
4.5 氮平衡模式驗證 41
4.6 不同施肥量氮汙染潛勢模擬分析 42
4.7 不同出流量氮汙染潛勢模擬分析 44
4.8 不同入滲量氮汙染潛勢模擬分析 44
4.8 模式修正及應用性探討 45
4.9減少水田氮汙染潛勢對策分析 47
第五章 結論與建議 49
5.1 結論 49
5.2 建議 50
參考文獻 51
附錄A.實驗田區灌溉水質氮素濃度檢測結果 57
附錄B.實驗田區出水口逕流水質氮素濃度檢測結果 59
附錄C.一期作施肥期間(2/28~4/25)降雨量及蒸發散量 61
附錄D.二期作施肥期間(7/24~8/31)降雨量及蒸發散量 62

表2.1 水稻田合理化施肥量 11
表2.2 花蓮農改場建議之水稻田合理化施肥量—氮素 12
表2.3 行政院農業委員會農糧署作物施肥手冊(水稻)之氮素合理化施肥量 12
表3.1 台灣地區實驗所得一、二期作水稻Kc之值 18
表3.2 水稻梯田雙環入滲試驗結果 18
表3.3 各項氮素轉化反應常數範圍相關研究彙整(Chowdary,2004) 27
表4.1 實驗田施用肥料成分(宜農中性含鎂複合肥料) 38
表4.2 2010年實驗田區一期作施肥量 38
表4.3 2010年實驗田區二期作施肥量 39
表4.4 本研究使用之各項氮素轉化速率常數 39
表4.5 二期作不同施肥量之氮汙染負荷計算結果 43
表4.6 二期作不同出流量之氮汙染負荷計算結果 44
表4.7 二期作不同入滲量之氮汙染負荷計算結果 45


圖2.1 水田水桶模式示意圖(Yoshinaga et al.,2007) 4
圖2.2 水田水平衡模式示意圖(Kang et al.,2006) 6
圖2.3 不同土地利用下水桶模式示意圖(Zulu et al.,1996) 7
圖2.4 模式控制體積水平衡示意圖(Chung,et al.,2003) 9
圖2.5 明暗迴歸水示意圖 13
圖3.1 新竹縣新埔鎮實驗田區實景及儀器設置 14
圖3.2 新竹縣新埔鎮實驗田區配置示意圖 15
圖3.3 水田垂直系統剖面 15
圖3.4 水田水收支平衡示意圖 17
圖3.5 進水口量測灌溉水量之90。V型堰 19
圖3.6 出流口量測排水量之90。V型堰 19
圖3.7 水田環境氮反應示意圖 20
圖3.8 水田氮素轉換示意圖 21
圖3.9 水田環境水收支及氮汙染潛勢計算流程 22
圖4.1 一期作灌溉水質之氮素變化 32
圖4.2 一期作出口逕流水質之氮素變化 32
圖4.3 二期作灌溉水質之氮素變化 33
圖4.4 二期作出口逕流水質之氮素變化 34
圖4.5 一期作施肥期間田區灌溉水量及排水量 35
圖4.6 一期作施肥期內水收支平衡計算所求得之湛水深隨時間變化 36
圖4.7 二期作施肥期間田區灌溉水量及排水量 37
圖4.8 二期作施肥期間水收支平衡計算所求得之湛水深隨時間變化 37
圖4.9 氮平衡模式之檢定結果 40
圖4.10氮平衡模式檢定之1比1等值線圖 40
圖4.11氮平衡模式之驗證結果 41
圖4.12氮平衡模式驗證之1比1等值線圖 42
圖4.13二期作不同施肥量模擬出水口之硝酸鹽氮變化圖 43
圖4.14前人理論模擬二期作硝酸鹽氮濃度與觀測值之比較(Chowdary et al.,2004) 46
圖4.15模擬肥料水解銨氮濃度與觀測值之比較結果之比較 47
論文參考文獻:[1] 王如意、易任,應用水文學,臺北,國立編譯館出版,茂昌圖書公司,2001。 
[2] 甘俊二,灌溉系統配水技術之分析與研究,臺北,台灣大學農工系,1979。
[3] 吳俊賢,塔塔加長期生態研究地區四種植生土壤之氮礦化及硝化作用,碩士論文,國立臺灣大學生物資源暨農學院農業化學系,臺北,2007。
[4] 吳添益、蔡政賢、張素真,「水稻合理化施肥技術」,苗栗區農業專訊,第四十二期,2008,第2-4頁。
[5] 吳瑞賢、林癸妙、李俊福,「水田回歸水之研究」,農業工程學報,第四十五 卷,第一期,1999,第72-82 頁。
[6] 林立偉,台灣地區酸性沉降之時空變化及台灣貢獻量之探討,碩士論文,國立成功大學環境工程研究所,臺南,1998。
[7] 翁菁羚,土壤有機氮形態對臺灣中部三種針葉林土壤氮礦化作用之影響,碩士論文,國立臺灣大學森林環境暨資源學系,臺北,2006。
[8] 張格綸,應用蒸發皿係數推估地區蒸發散量之研究,碩士論文,國立成功大學資源工程學系,臺南,2007。
[9] 張繼中,水稻之合理化施肥技術,台東農業改良場,水稻合理化施肥暨栽培管理講習會,2009。
[10] 陳世楷 ,都會區水田公益功能之調查與推廣,行政院農業委員會推廣水田生態環境保護及地下水涵養補注計畫成果報告,2003,pp9-1~9-22。
[11] 陳世楷、劉振宇、陳榮松、張淯傑、陳世宗,「水稻梯田水土保持之試驗研究」,2005水稻田農業多樣性機能研討會,台中,2005,第189-202頁。
[12] 陳尊賢,土壤與肥料講義,僑務委員會中華函授學校出版,2003。
[13] 陳榮五、李健捀、郭孚燿、廖萬正,作物合理化施肥技術,臺中區農業專訊第六十一期,2008, 第24-25頁。
[14] 潘昶儒、余宣穎、黃井約,「水稻優質栽培施肥管理模式」,花蓮區農業專訊第六十五期,2008,第12-15頁。
[15] 駱安華,「回歸水之計算和應用」,台灣水利,第八卷,第二期,1960,第47-56頁。
[16] 羅秋雄、張金城,作物施肥手冊(水稻),行政院農業委員會農糧署,2002。
[17] Bohn. H. L, B. L. McNeal and G. A. O’Connor, Soil Chemistry, John Wiley and Sons, Inc., 2001.
[18] Chang, C. C. and S. K. Tseng, “The optimum condition for autotrophic denitrification by Paracoccus denitrificans,” Journal of the Chinese Institute of Environmental Engineering, vol. 8, no. 3, 1998, pp. 233-238.
[19] Chin, W. and W. Kroontje, “Urea hydrolysis and subsequent loss of ammonia.” Soil Science Society of America journal, vol. 27, no.3, 1963, pp. 316–319.
[20] Chowdary, V. M,, N. H. Rao and P. B. S Sarma, “A coupled soil water and nitrogen balance model for flooded rice fields in India,” Agriculture, Ecosystems and Environment vol.103, no. 3, 2004, pp. 425-441.
[21] Chung, S. O, H. S. Kim and J. S. Kim, “Model development for nutrient loading from paddy rice fields,” Agricultural Water Management, vol. 62, no. 1, 2003, pp. 1-17.
[22] Horn, M. A., “User's Manual for the New England Water-Use Data System (NEWUDS),” U.S. Geological Survey Open-File Report 01-328, 2002.
[23] Hutson, J. L and R. J. Wagenet, “Simulating nitrogen dynamics in soils using a deterministic model,” Soil Use Manage, vol. 7, no. 2, 1991, pp, 74-78
[24] Jansson, P. and R. Anderson, “Simulation of runoff and nitrate leaching from an agricultural district in Sweden.” Journal Hydrology, vol. 99, no. 1-2, 1988, pp. 33–47.
[25] Jemison, J.M., Jabro, J.D., Richard, H.F., “Evaluation of LEACHM. II. Simulation of nitrate leaching from nitrogen-fertilized and manured corn.” Agronomy Journal, vol. 86, no. 5, 1994, pp. 852–859.
[26] Jena, D. and C Misra,., “The fate of 15N tagged urea leached with infiltrating water under rice and bare soil situation.” Oryza, vol. 27, no. 1, 1990, pp.40–47.
[27] Johnsson, H., L. Bergstorm, P. E. Johnsson and K. Paustian, “Simulated nitrogen dynamics and losses in a layered agricultural soil,” Agriculture, Ecosystems and Environment, vol. 18, no. 4, 1987, pp. 333-356.
[28] Johnsson, H., L. Bergstrom, P. Jansson, and K. Paustian, “Simulated nitrogen dynamics and losses in a layered agricultural soil.” Agriculture. Ecosystems and Environment, vol. 18, no.4, 1987, pp. 333–356.
[29] Kang, M. S, S. W. Park, J. J. Lee and K. H. Yoo, “Applying SWAT for TMDL programs to a small watershed containing rice paddy fields,” Agricultural Water Management, vol. 79, no. 1, 2006, pp.72-92.
[30] Kim, T. C., U. S. Gim, J. S. Kim, and D. S. Kim, “The multi-functionality of paddy farming in Korea,” Paddy Water Environ vol. 4, no. 4, 2006, pp. 169-179.
[31] Liang, X. Q., Y. X. Chen, H. L., G. M. Tian, W. Z. Ni, M. M. He and Z. J. Zhang, “Modeling transport and fate of nitrogen from urea applied to a near-trend paddy field,” Environmental Pollution, vol. 150, 2007, pp. 313-320.
[32] Ling, G. and I. El-kadi. Aly, “A lumped parameter model for nitrogen transformation in the unsaturated zone.” Water Resources Research, vol. 34, no. 2, 1998, pp. 203–212
[33] Liu, C. W., H. C. Huang, S. K. Chen, and Y. M. Kuo, ”Subsurface Return Flow and Groundwater Recharge of Terrace Fields in Northern Taiwan,” Journal of the American Water Resources Association, vol. 40, no. 3, 2004, pp. 603-614.
[34] Matsuno, Y., K. Nakamura, T. Masumoto, H. Matsui, T. Kato and Y. Sato, “Prospects for multifunctionality of paddy rice cultivation in Japan and other countries in monsoon Asia,” Paddy Water Environment, vol. 4, no 4, 2006, pp.189-197.
[35] Mishra, B.K. and B. Misra, “Kinetics of nitrification and nitrate reduction during leaching of ammonium nitrate through a limited ultisol profile.” Journal of the Indian Society of Soil Science, vol. 39, 1991, pp.221–228.
[36] Misra, C. and B.K. Mishra, “Miscible displacement of nitrate and chloride under field conditions.” Soil Science Society America Journal, vol. 41, no. 3, 1977, pp.496–499.
[37] Nash, J. E., J. V. Sutcliffe, “River flow forecasting through conceptual models. Part 1. A discussion of principles,” Journal Hydrology, vol. 10 no. 3, 1970, pp. 282-290.
[38] Olson, R. A. and L. T. Kurtz, “Crop nitrogen requirements, utilization and fertilization,” In Nitrogen in Agricultural Soils, Stevenson, F. J., Ed., Agronomy Monograph 22, Madison, WI, 1982, 567..
[39] Pathak, H. and M.C. Sarkar., “Nitrogen mineralization in manure amended soils in relation to soil water regime.” Journal of the Indian Society of Soil Science, vol 39.no. 2, 1995, pp. 267–269.
[40] Rao, P. S. C., R. E. Jessup and K. R. Reddy, “Simulation ofnitrogen dynamics in fooded soils,” Journal Soil Science, vol. 138, no. 1, 1984, pp. 54-62.
[41] Reddy, K.R., W.H.Patrick and R.E. Phillips, “The role of nitrate diffusion in determining the order and rate of denitrification in flooded soil. I. Experimental results.” Soil Science Society America Journal, vol.42, no.2, 1978, pp. 268–272
[42] Rolston, D.E. and M.A.Marino, “Simultaneous transport of nitrate and gaseous denitrification products in soil.” Soil Science Society America Journal, vol.40, no. 6, 1976, pp. 860–865.  
[43] Sahrawat, K.L., “Urease activity in tropical rice soils and floodwater.” Soil Biology and Biochemistry, vol.12, no. 2, 1980. pp. 195–196.
[44] Savant, N.K., A.F. James and G.H. McClellan, “Effect of soil submergence on urea hydrolysis.” Soil Science, vol. 140, no. 2, 1985, pp. 81–88.
[45] Seyfried, M.S. and P.S.C. Rao., “Kinetics of nitrogen mineralization in Costa Rican soils. Model evaluation and pretreatment effects.” Plant and Soil, vol.106, no.2, 1988, pp.159–169.
[46] Singh, K.N., and B. Prasad, “Volatilization loss of ammonia as influenced by integrated nutrient management in calcareous soils.” Journal of the Indian Society of Soil Science, vol. 40, no. 1, 1992, pp.82–86.
[47] Singh, R. and G.J.D. Kirk, “A model for predicting the fate of nitrogen fertilizer in lowland rice fields. II. Predicted dynamics of inorganic carbon, nitrogen and acidity in the soil and floodwater.” Journal of Soil Science, vol. 44, no. 2, 1993 ,pp. 285–297
[48] Stanford, G. and S. J. Smith, “Nitrogen mineralization potentials of soils,” Soil Science Society of America Journal, vol. 36, no. 3, 1972, pp. 465-472.
[49] Stockle, C. C., S. A. Martin and G. S. Campbell, “Crop Syst, a cropping systems simulation model: water/nitrogen budgets and crop yield,” Agricultural Systems, vol. 46, no. 3, 1994, pp. 335-359.
[50] Stockle, C. O., G. S. Campbell, “Simulation of crop response to water and nitrogen: an example using spring wheat,” Transactions of the ASABE, vol. 32, no. 1, 1989, pp. 66-68.
[51] Tchobanoglous, G., Wastewater Engineering Treatment Disposal, Reuse, McGraw-Hill, Inc., 1982.
[52] Verma, A., R. S. Kanwar and U. S. Tim, “Modification of drainage model by using the nitrogen component from the GLEAMS model,” Transactions of the ASAE, vol. 38, no.3 , 1995, pp. 716-724.
[53] Yoshinaga, I., A. Miura, T. Hitomi, K. Hamada and E. Shiratani, “Runoff nitrogen from a large sized paddy field during a crop period.” Agricultural Water Management, vol. 87, no. 2, 2007, pp. 217-222.
[54] Zulu, G., M. Toyota and S. Misawa, “Characteristics of water reuse and its effect on paddy irrigation system water balance and Riceland ecosystem,” Agricultural Water Management, vol. 31, no. 3, 1996, pp. 269-283.
論文全文使用權限:同意授權於2012-08-25起公開