現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:雙圓型潛盾隧道地表沉陷分析之探討-以機場捷運線臺北三重段 [以論文名稱查詢館藏系統]
論文英文名稱:Ground surface settlement of Double-O-tube shield tunnel for Airport Access MRT in Taipei Basin [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:99
出版年度:100
中文姓名:柯婉伊
英文姓名:Wan-yi Ka
研究生學號:98428031
學位類別:碩士
語文別:中文
口試日期:2011-07-22
論文頁數:119
指導教授中文名:陳水龍
口試委員中文名:魏敏華;陳卓然;陳逸駿
中文關鍵詞:雙圓型潛盾隧道有限元素地表沉陷現場監測
英文關鍵詞:Double-o-tube shield tunnelfinite elementground surface settlementin-situ monitoring
論文中文摘要:本研究針對雙圓型潛盾隧道施工引致地表沉陷進行評估,以桃園國際機場捷運線台北三重段CA450A標工程為案例,運用有限元素法PLAXIS 2D軟體,以實際案例之斷面地質條件進行不同覆土深度單孔隧道數值分析,依最大地表沉陷量相同,比對隧道斷面縮減率及土壤釋放應力兩種數值分析方法之參數關係。DOT潛盾隧道案例以PLAXIS數值分析七處監測斷面地表沉陷量,其數值分析地表曲線與現場監測沉陷觀測資料及經驗公式進行地表沉陷槽相互比較,可驗證PLAXIS分析雙圓型潛盾隧道之適用性,亦可了解雙圓型潛盾隧道開挖過程中可能影響情況及對鄰近建物之影響範圍,可供後續雙圓型潛盾隧道工程應用參考。
針對單孔潛盾隧道數值分析之隧道斷面縮減率及土壤釋放應力兩參數最大地表沉陷關係,於隧道中心深度20m時呈非線性關係,則於隧道中心深度24m及27m時呈線性關係。臺北三重段雙圓型潛盾隧道經由數值分析、經驗公式及現場監測沉陷三種方式比對結果,經驗公式疊加法及等面積法兩者所計算之雙圓型潛盾隧道地表沉陷槽極為相似。但經驗公式所計算結果與現場監測沉陷結果比對,其沉陷槽形狀趨勢大致吻合,但隧道中心最大地表沉陷值有差異性。數值分析模擬結果與現場監測沉陷相比對,其隧道中心最大地表沉陷值及地表沉陷槽趨勢大致吻合。經由數值分析所得之土壤釋放應力值與數值最大地表沉陷量、現地漏失率,皆為正比線性關係。可供未來雙圓型潛盾隧道數值分析土壤釋放應力值範圍,以此預測可能之地表沉陷量上下限範圍。
論文英文摘要:This study evaluated the ground surface settlement caused by double-o-tube shield tunnel construction, using Taoyuan International Airport MRT Line Taipei-Sanchung Section CA450A as an example. PLAXIS 2D software of the infinite element method was used to conduct numerical analysis on the single bore tunnels at various depths of earth covering according to the geologic conditions of the sections in actual cases, in order to compare the parameter relationship between the two numerical analysis methods of percentage of area reduction of the tunnel and soil released stress based on the same maximum ground surface settlement. In the case of DOT shield tunnel, PLAXIS numerical analysis was carried out on the ground surface settlement of 7 monitored sections. Through intercomparison among the ground surface curve by the numerical analysis, settlement observation data by in-situ monitoring and empirical formula calculation in terms of the ground surface settlement trough, the applicability of PLAXIS on analyzing the Double-o-tube shield tunnel has been verified, which could help to understand possible influences in the process of Double-o-tube shield tunnel excavation and influence range to adjacent structures, and provide reference for future Double-o-tube shield tunnel project application.
The maximum ground surface settlement relationship of the percentage of area reduction of the tunnel and soil released stress by the numerical analysis of the parallel-tube shield tunnel presented a non-linear relationship at 20m of the central depth of the tunnel, and presented a linear relationship when it reached 24m and 27m of the central depth of the tunnel. In the case of Double-o-tube shield tunnel of Taipei-Sanchung Section, the ground surface settlement troughs of the Double-o-tube shield tunnel calculated by way of empirical formula superposition method and the equal-area method were similar according to the comparison of results by the three methods of numerical analysis, empirical formula and in-situ monitoring. However, in the comparison of results of empirical formula calculation and in-situ monitoring, the settlement troughs were identical in shape and trending but the maximum ground surface settlement values at the tunnel center presented certain difference. In the comparison of the results of numerical analysis simulation and in-situ monitoring, the maximum ground surface settlement values at the tunnel center and the shape and trending of ground surface settlement troughs were identical. The soil released stress value obtained by the numerical analysis presented a direct proportional linear relationship with the maximum ground surface settlement and the in-situ loss rate, which can be used in numerical analysis of the soil released stress of Double-o-tube shield tunnel in the future so as to predict the upper and lower limits of possible ground surface settlement.
論文目次:目錄
誌 謝 ⅰ
摘 要 ⅱ
ABSTRACT ⅲ
目錄 ⅴ
表目錄 ⅶ
圖目錄 ⅷ
第一章 緒論 1
1.1研究動機 1
1.2研究目的 2
1.3研究方法與流程 2
1.4論文架構 3
第二章 文獻回顧 5
2.1 潛盾隧道施工引致地表沉陷變形之原因 5
2.2 潛盾隧道施工引致地表沉陷之經驗評估法 8
2.2.1 單孔隧道施工引致之地表沉陷 8
2.2.2雙(多)孔隧道施工引致之地表沉陷 15
2.2.3雙圓型隧道(DOT)施工引致之地表沉陷 16
2.3 潛盾隧道施工引致地表沉陷之數值分析法 18
第三章 桃園國際機場捷運線CA450A標案例 21
3.1工程概述 21
3.1.1基地位置及環境概況 21
3.1.2工程內容 22
3.1.3地層與地下水 24
3.2 潛盾隧道施工情形 26
第四章 數值分析方法與參數選用 34
4.1 Plaxis程式簡介 34
4.2基本假設 35
4.3潛盾隧道開挖分析流程 37
第五章 DOT潛盾隧道分析及探討 41
5.1單孔隧道斷面縮減率與土壤釋放應力之關係 41
5.1.1分析內容及輸出結果 41
5.1.2成果評估 50
5.2 DOT潛盾隧道分析斷面資料 51
5.3 DOT潛盾隧道之地層及材料參數選用 53
5.4 DOT潛盾隧道監測斷面數值分析 54
5.4.1數值分析及成果比對 54
5.4.2監測斷面分析成果 68
5.5 DOT潛盾隧道經驗公式分析 69
5.5.1經驗公式評估及成果比對 69
5.5.2經驗公式成果評估 75
5.6實際案例監測系統 76
5.6.1監測系統配置及管理 76
5.6.2地面監測資料分析地表沉陷 80
5.7 DOT潛盾隧道綜合成果比對 90
第六章 結論與建議 98
6.1結論 98
6.2建議 99
參考文獻 101
附錄 105
DOT潛盾隧道七處監測斷面引致地表沉陷數值分析成果 105
論文參考文獻:參考文獻
[1] 方永壽、陳秋宗(1988),「潛盾隧道施工盾尾孔隙所引致之地盤沉陷」,中華民國第十二屆力學會議論文集,第707-716頁。
[2] 王繼勝、林軒、楊國榮(1988),「潛盾工法與地表沈陷」,地工技術雜誌,第23期,第72-83頁。
[3] 台北市政府捷運工程局(2008),「機場線雙圓潛盾隧道規劃設計」,捷運工程叢書30。
[4] 台北市政府捷運工程局(2009),「機場線雙圓潛盾機與環片製作實務」,捷運叢書36。
[5] 朱旭、陳俊宏、林建華、姚賜麟(2008),「簡論台北捷運雙圓型潛盾隧道之分析」,地工技術,第118期,第37-46頁。
[6] 朱洪高、鄭宜楓、陳昊(2006),「雙圓盾構隧道土體地表沈降特性」,建築科學與工程學報,第23卷,第2期,第62-67頁。
[7] 周文波、顧春華(2004),「雙圓盾構施工技術」,現代隧道技術,第4期。
[8] 徐育芬(2010)「雙圓型潛盾隧道案例研究-以機場捷運台北三重段為例」碩士論文,國立交通大學土木工程研究所,新竹。
[9] 宏鼎工程股份有限公司(2007),「臺灣桃園國際機場聯外捷運系統CA450A標三重站(A2)尾軌(不含)至臺北站(A1)間路線段土建工程補充地質鑽探試驗工作報告」。
[10] 郭泳承(2010)「潛盾隧道施工引致地表沉陷之三維數值模擬分析」碩士論文,國立台北科技大學土木與防災研究所,臺北。11
[11] 張統立、張慶賀、胡向東、朱繼文(2005),「雙圓盾構隧道施工土壤擾動特性及實測分析」,岩石力學與工程學報,第24卷,第2期,第5950-5955頁。
[12] 楊國榮、王勝男、范陳柏(1995),「潛盾隧道施工所導致之地表沈陷」,第六屆大地工程學術研究討論會,阿里山,第1083-1090頁。13
[13] 楊國榮、王勝男、范陳柏(1995),「潛盾隧道施工所導致之地表沈陷」,第六屆大地工程學術研究討論會,阿里山,第1083-1090頁。13
[14] 楊國榮、楊慕泉、趙際禮(1996),「泥水加壓式潛盾機施工導致之地表沉陷探討(上)」,現代營建,第197期,第29-35頁。13
[15] 楊國榮、楊慕泉、趙際禮(1996),「泥水加壓式潛盾機施工導致之地表沉陷探討(下)」,現代營建,第198期,第27-32頁。13
[16] 楊國榮、楊鵬飛、范陳柏 (1997)「多重潛盾隧道施工導致之地表沈陷」第二屆結構與地基國際學術研討會,第744~751頁,香港。13
[17] 楊慕泉(2007),「潛盾隧道施工引致地表沈陷之分析探討」,碩士論文,國立台北科技大學土木與防災研究所,台北。13
[18] 臺灣世曦工程顧問有限公司(2008),「台灣桃園國際機場聯外捷運系統建設計畫CA450A標土建工程潛盾機設計及製作設計書」。14
[19] 臺灣世曦工程顧問有限公司(2009),「臺灣桃園國際機場聯外捷運系統建設計劃DA115A標-補充地質調查報告」。14
[20] Attewell, P. B. (1981). “Engineering Constract, Site Investigation and Surface Movements in Tunneling Works, Soft-Ground Tunneling-Failures and Displacement.” A. A. Balkema, pp. 5-12.
[21] Chow, B.(2006),“Double-O-tube shield tunneling technology in the Shanghai Rail Transit Project”,Tunneling and Underground Space Technology 21, pp.594 -601。
[22] Clough, W. and Schmidt, B. (1981). “Design and Performance of Excavations and Tunnels in Soft Clay,” Soft Clay Engineering, Elsevier Amsterdam.
[23] Cording, E. J. and Hansmire, W. H. (1975). “Displacement Around Soft Ground Tunnels,” Proceeding of 6th Pan American Conference of Soil Mechanics and Foundations Engineering, Buenos Aires, pp.571-633.
[24] Fang, Y. S., Lin, J. S. and Su, C. S., (1994) “An Estimate of Ground Settlement due to Shield Tunnelling by the Peck-Fujita Method,” Can. Geotech. J. Vol.31, No.3, pp.431-443.
[25] Hanya, T. (1977). “Ground Movements Due to Construction of Shields - Driven Tunnel,” Proceedings of the 9th International Conference on Soil Mechanics and Foundations Engineering, Tokyo, pp.759-789.
[26] Hoyaux, B. and Ladanyi, B. (1970). “Gravitational Stress Field Around a Tunnel in Soft Ground,” Canadian Geotechnical Journal, Vol. 7, pp.54-61.
[27] Hwang, R. N., Fan, C. B., Yang, G. R. (1995). “Consolidation Settlements Due to Tunnellimg,” Proceedings of South East Asian Symposium on Tunneling and Underground Space Development, Bangkok, Thailand, pp.79-86.
[28] Hwang, R. N., Wu, D. J., Lee, C. J. (1995). “Pore Pressure Response to Shield Tunnelling in Soft Clay,” Proceedings of South East Asian Symposium on Tunneling and Underground Space Development, Bangkok, Thailand, pp.33-40.
[29] Hwang, R. N., Z. C. Moh, and M. Chen (1996). “PORE PRESSURE INDUCED IN SOFT GROUND DUE TO TUNNELLING” Reprinted from Proceedings of Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, London,UK,pp.695-700.
[30] Hwang, R. N., Z. C. Moh, G. R. Yang, C. B. Fan, C. L. Chao, and R. K. Wong (1998). “GROUND FREEZING FOR REPAIRING A DAMAGED TUNNEL”Reprinted from Proceedings of 13th Southeast Asian Geotechnical Conference, Taipei, Taiwan.
[31] O’Reilly, M. P. and New B. M., (1982).“Settlements above Tunnels in United Kingdom-Their Magnitude and Prediction”, Tunnelling’82, pp 173-181.
[32] Peck, R. B. (1969). “Deep Excavations and Tunnelling in Soft Ground,” Proceedings of 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City, Mexico, State-of-the-Art Volume, pp.225-290.
[33] Schmidt, B. (1974). “Prediction of Settlements Due to Tunnelling in Soil: Three Case Histories,” Proceedings of 2nd Rapid Excavation Tunnelling Conference, San Franciso, Vol. 2 , pp.1179-1199.
[34] Shen, S. L.,Horpibulsuk, S.,Liao, S. M.and Peng(2009),“Analysis of the behavior of DOT tunnel lining caused by rolling correction operation”, Tunnelling and Underground Space Technology 24 ,pp.84 - 90。
論文全文使用權限:同意授權於2014-08-24起公開