現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:以有限元素法模擬RC剪力牆於改變不同參數對強度與裂縫分布之影響 [以論文名稱查詢館藏系統]
論文英文名稱:Numerical Simulation of the Strength and Cracking Distribution of RC Shear Wall [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:100
出版年度:101
中文姓名:陳泰成
英文姓名:Tai-Cheng Chen
研究生學號:98428009
學位類別:碩士
語文別:中文
口試日期:2012-01-07
論文頁數:101
指導教授中文名:李有豐
口試委員中文名:陳清泉;徐增興;邱佑宗
中文關鍵詞:有限元素法RC 剪力牆裂縫分布
英文關鍵詞:Finite Element MethodShear WallsCrack Distribution
論文中文摘要:剪力牆於鋼筋混凝土結構系統中,可提供足夠的側向勁度,亦充分被應用於
當今結構補強工程中。因影響RC 剪力牆受力行為主要因素有;鋼筋比、高寬比與
牆體厚度等,但由於前人文獻中並無大量的針對剪力牆改變不同配置,對剪力牆
受力後之行為所造成影響進行探討。故本研究以ANSYS 有限元素軟體,針對前人
文獻之RC 剪力牆試體進行非線性側推分析,其中試體包含高、中、矮型RC 剪力
牆三座,與矮型開口剪力牆、開門雙邊翼牆各一座,分析結果與實驗結果比較後,
將高型剪力牆改變其鋼筋比、高寬比、牆體厚度,開口剪力牆則改變牆體厚度進
行分析。經分析結果與前人文獻結果比較後,發現其分析之側力值雖比實驗高,
但其降伏位移與牆體整體之力-位移曲線趨勢皆與實驗結果相似,牆體裂縫分布範
圍亦與實驗相似。高型RC 剪力牆於增加鋼筋比可提高牆體強度,裂縫分布範圍亦
擴大,增加牆體厚度強度亦提升,但提升效果並不明顯,牆體增厚之裂縫分布範
圍則相對減少,增加牆體高寬比,則造成牆體強度降低,但產生降伏強度之位移
延後發生,裂縫分布則有往牆底集中之趨勢。矮型開口剪力牆與開門雙邊翼牆增
加牆體厚度強度提升些許,對裂縫分布範圍則無太大影響。
論文英文摘要:Reinforced Concrete (RC) shear wall in structure system can provide lateral stiffness and be applied to the structural reinforcement project. The main factors to affect the mechanical behavior of the RC shear wall include the steel ratio, the ratio of height to width, and the wall thickness. Therefore, the study is to evaluate the past literature and the nonlinear pushover analysis of RC shear wall by the Finite Element Method of ANSYS software. The specimens include three types of RC shear wall (in high, medium and low mode), framed shear walls with opening, low- rise and door. By changing the steel ratio, the ratio of height to width and the wall thickness, the nonlinear pushover analysis is conducted for evaluation. After reviewing the analysis and comparing the results with the past literature, the trends of the force-displacement curve and the crack distribution in the wall are similar to the experimental results. The increase of the steel ratio of RC shear wall leads to the increase of the wall strength as well as the cracks distribution scope. The increase of the thickness of RC shear wall leads to the slight increase of the wall strength, but the decrease of the cracks distribution scope. The increase of the ratio of height to width of RC shear wall causes the decrease of the wall strength. However, to increase the thickness of RC shear wall with opening, low- rise and door, will lead to the increase of the wall strength, but no effect on the cracks distribution.
論文目次:目錄
中文摘要 ......................................................................................................................... i
英文摘要........................................................................................................................ ii
誌謝 .............................................................................................................................iii
目錄............................................................................................................................... iv
表目錄.......................................................................................................................... vii
圖目錄......................................................................................................................... viii
第一章緒論 ................................................................................................................ 1
1.1 研究動機與目的............................................................................................. 1
1.2 文獻回顧......................................................................................................... 2
1.2.1 國外相關研究...................................................................................... 2
1.2.2 國內相關研究...................................................................................... 3
1.3 研究內容與流程規劃..................................................................................... 4
第二章材料之組成律 ................................................................................................ 6
2.1 鋼筋之應力-應變關係.................................................................................... 6
2.2 混凝土之應力-應變關係................................................................................ 8
2.3 材料之塑性力學........................................................................................... 10
2.3.1 降伏面................................................................................................ 10
2.3.2 硬化法則............................................................................................ 11
2.4 混凝土之破壞準則....................................................................................... 11
第三章 RC剪力牆之有限元素分析 ......................................................................... 19
3.1 ANSYS簡介................................................................................................... 19
3.2 元素介紹....................................................................................................... 21
v
3.2.1 鋼筋 .................................................................................................... 21
3.2.2 混凝土................................................................................................ 22
3.3 材料模型....................................................................................................... 23
3.4 有限元素模型之建立................................................................................... 28
3.5 非線性結構分析........................................................................................... 31
3.6 非線性分析之求解法................................................................................... 34
第四章 RC剪力牆之非線性側推分析測試與驗證................................................... 37
4.1 試體介紹....................................................................................................... 37
4.2 分析與實驗結果比較................................................................................... 40
4.2.1 HWFL1 ................................................................................................ 40
4.2.2 MWF1 .................................................................................................. 47
4.2.3 LWF2 ................................................................................................... 54
4.2.4 LFWL .................................................................................................. 60
4.2.5 WFW .................................................................................................... 67
第五章改變剪力牆參數之非線性側推分析 .......................................................... 74
5.1 改變水平筋比............................................................................................... 74
5.2 改變垂直筋比............................................................................................... 77
5.3 改變牆體厚度............................................................................................... 81
5.4 改變高寬比................................................................................................... 85
5.5 改變開口剪力牆之牆體厚度....................................................................... 90
5.5.1 LFWL .................................................................................................. 90
5.5.2 WFW .................................................................................................... 93
第六章結論 .............................................................................................................. 96
6.1 結論............................................................................................................... 96
6.2 建議............................................................................................................... 97
vi
參考文獻 ...................................................................................................................... 98
論文參考文獻:參考文獻
[1] Al-Gorafi, M. A., Ali, A. A. A., Othman, I., Jaafar, M. S., Anwaret, M. P. (2011).
“Externally Prestressed Monolithic and Segmental Concrete Beams under Torsion: a
Comparative Finite Element Study.” Materials Science and Engineering, Vol. 17, pp.
1-9.
[2] Anthony J. Wolanski, B. S. (2004). “Flexural Behavior of Reinforced and
Prestressed Concrete Beams Using Finite Element Analysis.” MS Thesis. Marquette
University, USA.
[3] Buyukkaragoz, A. (2010). “Finite Element Analysis of the Beam Strengthened with
Prefabricated Reinforced Concrete Plate.” Scientific Research and Essays, Vol. 5, pp.
533-544.
[4] Dahmani, L., Khennane, A. and Kaci, S. (2010). “Crack Identification in Reinforced
Concrete Beams Using ANSYS Software.” Strength of Materials, Vol. 42, No. 2, pp.
232-240.
[5] Dan, D., Fabian, A. and Stoian, V. (2011). “Theoretical and Experimental Study on
Composite Steel–Concrete Shear Walls with Vertical Steel Encased Profiles.”
Journal of Constructional Steel Research, Vol. 67, pp. 800-813.
[6] Fanning, P. (2001). “Nonlinear Models of Reinforced and Post-Tensioned Concrete
Beams.” Electronic Journal of Structural Engineering, Vol. 2, pp. 112-119.
[7] Habashi, H. R. and Alinia, M. M. (2010). “Characteristics of the Wall Frame
Interaction in Steel Plate Shear Walls.” Journal of Constructional Steel Research,
Vol. 66, pp. 150-158.
[8] Jalali, A. and Dashti, F. (2010). “Nonlinear Behavior of Reinforced Concrete Shear
Walls Using Macroscopic and Microscopic Models.” Engineering Structures, Vol.
32, pp. 2959-2968.
[9] Kadhim, M. M. A. (2011). “Nonlinear FE Analysis of Reinforced H.S. Concrete
Continuous Beam Strengthened with CFRP Sheet.” International Scientific
Conference, pp. 597-601.
[10] Kadhum, A. F. (2010). “Nonlinear Behavior of Steel-Concrete Composite Beams
Curved in Plane with CFRP Strips Bonding.” Eng. & Tech. Journal, Vol. 28, No. 12,
pp. 2308-2324.
99
[11]Kaltakci, M. Y., Ozturk, M. and Arslan, M. H. (2010). “An Experimental
Investigation for External RC Shear Wall Applications.” Natural Hazards and Earth
System Sciences, Vol. 10, pp. 1941-1950.
[12]Kazaz, I., Yakut, A. and Gulkan, P. (2006). “Numerical Simulation of Dynamic
Shear Wall Tests: A Benchmark Study.” Computers and Structures, Vol. 84, pp.
549-562.
[13]Kent, D. C., and Park, R. (1971). “Flexural Memberes with Confined Concrete,”
Journal of the Structural Division, ASCE, Vol. 97, No. 7, pp. 1969-1990.
[14]Kheyroddin, A. and Naderpour, H. (2008). “Nonlinear Finite Element Analysis of
Composite RC Shear Walls.” Iranian Journal of Science & Technology, Transaction
B, Engineering, Vol. 32, No.B2, pp. 79-89.
[15]Kwak, H.-G. and Kim, D.-Y. (2004). “Material Nonlinear Analysis of RC Shear
Walls Subject to Monotonic Loadings.” Engineering Structures, Vol. 26, pp.
1517-1533.
[16]Li, L., Li, X. and Chen, Y. (2010). “Numerical Simulation on the Mechanical
Behaviour of Angle Steel-Encased Composite Column Filled with Steel
Tube-Reinforced Concrete.” Materials Science and Engineering, Vol. 10, pp.1-7.
[17]Li, X. and Wang, Y. (2010). “Three-Dimensional Nonlinear Finite Element Analysis
of Reinforced Concrete Structures Based on ANSYS Program.” International
Conference on Computer Engineering and Technology, Vol. 6, pp. 42-46.
[18]Lopes, M. S. (2001). “Experimental Shear-Dominated Response of RC Walls Part I:
Objectives, Methodology and Results.” Engineering Structures, Vol. 23, pp.
229-239.
[19]Mander, J. B., Priestley, M. J. N. and Park, R. (1988). “Theoretical Stress-strain
Model for Confined Concrete,” Journal of Structural Engineering, ASCE, Vol. 114,
No. 8, pp. 1804-1826.
[20]Pilakoutas, K. and Elnashai, A. (1995). “Cyclic Behavior of Reinforced Concrete
Cantilever Walls, Part I: Experimental Results.” ACI Structural Journal, pp.
271-281.
[21]Salonikios, T. N. (2007). “Analytical Prediction of the Inelastic Response of RC
Walls with Low Aspect Ratio.” Journal of Structural Engineering, pp. 844-854.
[22]Shaingchina, S., Lukkunaprasita, P. and Woodb, S. L. (2007). “Influence of
Diagonal Web Reinforcement on Cyclic Behavior of Structural Walls.” Engineering
100
Structures, Vol. 29, pp. 498-510.
[23]Tasnimi, A. A. (2000). “Strength and Deformation of Mid-Rise Shear Walls Under
Load Reversal.” Engineering Structures, Vol. 22, pp. 311-322.
[24]Thomson, E. D., Perdomo, M. E., Picon, R., Marante, M. E., Florez-Lopez, J.
(2009). “Simplified Model for Damage in Squat RC Shear Walls.” Engineering
Structures, Vol. 31, pp. 2215-2223.
[25]Willam K. J., and Warnke, E. P. (1975). “Constitutive Models for the Triaxial
Behavior of Concrete,” International Association of Bridge and Structural Engineers
Seminar on “Concrete Structures Subjected to Triaxial Stresses,” Paper III-1,
Bergamo, Italy, pp.1-30.
[26]Xue, W., Tan, Y. and Zeng, L. (2010). “Flexural Response Predictions of Reinforced
Concrete Beams Strengthened with Prestressed CFRP Plates.” Composite Structures,
Vol. 92, pp. 612-622.
[27]Yu, C. (2010). “Shear Resistance of Cold-Formed Steel Framed Shear Walls with
0.686 mm, 0.762 mm, and 0.838 mm Steel Sheet Sheathing.” Engineering
Structures, Vol. 32, pp. 1522-1529.
[28]Zhang, H. and Lu, X. (2011). “Numerical Simulation Research of the Laminated RC
Shear Walls with Different Concrete Ages.” ISIA, Vol.86, pp.40-47.
[29]葉瑞德,高型RC剪力牆-構架互制實驗研究,碩士論文,國立成功大學土木工
程研究所,台南,2002。
[30]余明松,低型RC剪力牆-構架互制實驗研究,碩士論文,國立成功大學土木工
程研究所,台南,2002。
[31]蕭輔沛,鋼筋混凝土剪力牆-構架互制行為之實驗研究與數值模擬,博士論文,
國立成功大學土木工程研究所,台南,2004。
[32]陳冠帆,韌性剪力牆之有限元素分析,碩士論文,國立成功大學建築研究所,
台南,2005。
[33]簡士倫,以有限元素法分析模擬RC開口剪力牆之裂縫分佈及演化過程,碩士論
文,國立台北科技大學土木與防災研究所,台北,2010。
[34]馬鈺婷,以有限元素法分析模擬RC剪力牆之裂縫分佈及其演化過程,碩士論
文,國立台北科技大學土木與防災研究所,台北,2009。
[35]陳振偉,以等值柱模型分析含牆RC構架,碩士論文,國立台北科技大學土木與
防災研究所,台北,2005。
[36]林家民,中高型RC剪力牆之等值柱參數建立與分析,碩士論文,國立台北科技
101
大學土木與防災研究所,台北,2008。
[37]司順偉,低矮型鋼筋混凝土剪力牆之實驗與分析研究,碩士論文,國立台北科
技大學土木與防災研究所,台北,2008。
[38]陳力平,含開口RC牆非韌性構架之耐震行為研究,碩士論文,國立台灣科技大
學營建工程系,台北,2002。
[39]何象鏞,含牆鋼筋混凝土結構側推分析之研究,博士論文,國立中央大學土木
工程學系,桃園,2007。
[40]黃明田,韌性鋼筋混凝土剪力牆-構架互制實驗研究,碩士論文,國立成功大學
土木工程研究所,台南,2003。
[41]林石星,低矮型RC剪力牆側向載重位移曲線預測之研究與應用,博士論文,國
立台灣科技大學營建工程系,台北,2007。
[42]張權,低降伏強度鋼鋼板剪力牆系統之耐震行為,博士論文,國立台灣科技大
學營建工程系,台北,2006。
[43]顏萬鴻,大尺寸傳統配筋預鑄RC剪力牆實驗與分析,碩士論文,國立成功大學
土木工程研究所,台南,2005。
[44]蘇啟東,柱與剪力牆位置對建築結構系統規劃之研究,碩士論文,國立成功大
學建築研究所,台南,2005。
[45]許銓泰,剪力牆動力分析與震動台試驗之比較,碩士論文,國立成功大學土木
工程研究所,台南,2001。
[46]張家瑜,RC 框型構架耐震修復補強之研究,碩士論文,國立中央大學土木工
程學系,桃園,2003。
[47]陳其雍,混凝土塑性破壞模型之研究,碩士論文,國立中央大學土木工程學系,
桃園,2000。
[48]莊智雄,鋼筋混凝土RC剪力牆-構架互制初步數值分析,碩士論文,國立成功
大學土木工程研究所,台南,2004。
[49]何東杰,鋼鈑補強混凝土樑之分析,碩士論文,朝陽科技大學營建工程系,台
中,2002。
[50]黃冠勳,雙層鋼筋混凝土剪力牆承受反向重覆載重之剛度變化及耐震診斷研
究,碩士論文,國立成功大學建築及都市設計研究所,台南,1989。
[51]賴慶鴻,鋼筋混凝土剪力牆強度與剛度之試驗與分析,碩士論文,國立成功大
學建築研究所,台南,1999。
論文全文使用權限:同意授權於2014-01-20起公開