現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:FRP橋面版構件於三點抗彎測試與有限元素分析之研究 [以論文名稱查詢館藏系統]
論文英文名稱:The Study of Three-Point Bending Test and Finite Element Analysis on FRP Bridge Deck [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:100
出版年度:101
中文姓名:吳嘉濠
英文姓名:Chia-Hao Wu
研究生學號:98428003
學位類別:碩士
語文別:中文
口試日期:2012-01-07
論文頁數:113
指導教授中文名:李有豐
口試委員中文名:陳清泉;徐增興;邱佑宗
中文關鍵詞:纖維強化高分子複合材料(Fiber Reinforced Plastic, FRP)橋面版三點抗彎測試有限元素分析
英文關鍵詞:Fiber Reinforced Plastic (FRP)Bridge deckThree-Point Bending TestFinite Element Analysis
論文中文摘要:本論文主要在探討纖維高分子複合材料(Fiber Reinforced Plastic, FRP)所製成之橋面版受三點抗彎作用下之力學行為及破壞模式,並應用有限元素分析軟體建立橋面版模型,且依據實驗結果進行比較驗證有限元素模型之正確性。本論文先以國內外FRP橋面版之相關研究及實際施作之案例作為參考依據,進行FRP橋面版試體之設計與實驗之規劃。FRP橋面版試驗採用原型FRP橋面版試驗、FRP橋面版內填不同填充物及FRP橋面版外層包覆不同纖維布之試驗。實驗中採三點抗彎進行測試,以測力計(Load Cell)與位移計(Dial Gauge)測量各組試體受力與變位關係,並進行破壞模式比較。實驗結果顯示原型FRP橋面版受力與變位關係呈線性,無明顯降伏點即產生破壞。由FRP橋面版內填不同填充物之試驗結果可知,在FRP橋面版內填填充物,可有效提升原FRP橋面版之整體強度與勁度;亦於FRP橋面版外層包覆不同纖維布之試驗結果顯示, FRP橋面版外層包覆纖維布,可有效提升原FRP橋面版之圍束力亦可提升其極限強度。最後本論文以FRP版構件進行數值分析軟體ANSYS之有限元素法分析,將分析及實驗結果進行比較,比較結果BFRP及GFRP版構件之分析值皆與實驗值相當接近,故可確認分析模型之準確性。
論文英文摘要:This study presents the use of Fiber Reinforced Plastic (FRP) composite bridge deck subjected to three-point bending test to determine the mechanical behaviors as well as the failure modes. Test results were compared with the results taken from Finite-Element Method (FEM) analysis software to verify the accuracy of the Finite-Element model. Three different FRP composite bridge panel types were used for the experiments. One is the prototype panel, an epoxy mortar-filled FRP panel, and the third is an epoxy mortar-filled FRP panel wrapped with carbon fiber. A Load Cell and Dial Gauge were used in the three-point bending test to measure the force-displacement relationship of each specimen and also make a comparison of the failure mode. The results of the prototype FRP bridge deck showed a linear force-displacement relationship; no obvious failure at yielding point. The FRP composite bridge deck filled with different fillers indicated that the infilling materials effectively improved the ultimate strength and stiffness of the original composite deck. And also, the wrapping of the third kind of FRP composite bridge deck with the different fiber patches FRP deck version of the outer layer coated fabric showed that the fiber wrapping increased the confinement and thus enhanced the ultimate strength of the component. Finally, in this study, numerical analysis software, ANSYS, was used to compare the finite element analysis results with that of the experimental results. The results of the comparison on analysis and experiment are very close; which verifies the finite element model's accuracy.
論文目次:中文摘要...................................................i
英文摘要..................................................ii
誌謝......................................................iv
目錄......................................................vi
表目錄....................................................ix
圖目錄.....................................................x
第一章 緒論................................................1
1.1前言....................................................1
1.2研究動機................................................2
1.3研究目的................................................9
1.4研究流程...............................................10
第二章 文獻回顧...........................................13
2.1國外FRP橋面版相關研究..................................13
2.2 國內FRP橋面版相關研究.................................20
2.3 國外FRP橋面版實際案例.................................21
2.3.1 美國FRP橋梁.........................................22
2.3.2 歐洲FRP橋梁.........................................23
2.3.3 亞洲FRP橋梁.........................................26
第三章 FRP橋面版設計與製程................................28
3.1 FRP基本性質...........................................28
3.1.1 複合材料之組成......................................28
3.1.2 強度高..............................................29
3.1.3 輕質性..............................................29
3.1.4 耐蝕性..............................................30
3.1.5 可設計性............................................30
3.1.6 FRP之低二氧化碳排放量...............................31
3.2 BFRP橋面版斷面設計....................................31
3.2.1 BFRP橋面版之結構需求概要............................32
3.2.2 BFRP材料參數與分析設計之基本假設條件................32
3.2.3 BFRP橋面版斷面尺寸介紹..............................34
3.3 BFRP橋面版製作方法與過程..............................39
3.4 GFRP橋面版製作方法與過程..............................41
第四章 FRP橋面版實驗內容與結果............................43
4.1實驗試體規劃...........................................43
4.1.1 BFRP橋面版試體規劃與編號............................43
4.1.2 GFRP橋面版試體規劃與編號............................46
4.1.3 FRP版構件內填填充物及外層貼附纖維貼片施作流程.......51
4.1.4 實驗試體架設方法與儀器設備簡介......................55
4.2 BFRP橋面版實驗結果....................................58
4.2.1 BFRP原型版構件之三點抗彎結果........................58
4.2.2 BFRP版構件內填保麗龍混凝土之三點抗彎結果............62
4.3.3 BFRP版構件內填常重混凝土之三點抗彎結果..............64
4.3.4 BFRP版構件內填環氧樹脂砂漿之三點抗彎結果............66
4.4 GFRP橋面版實驗結果....................................69
4.4.1 GFRP原型版構件之三點抗彎結果........................69
4.4.2 GFRP版構件外層貼覆纖維貼片之三點抗彎結果............72
4.4.3 GFRP版構件內填環氧樹脂砂漿之三點抗彎結果............79
4.4.4 GFRP版構件內填環氧樹脂砂漿外層貼覆纖維貼片之三點抗彎結
果..................................................81
4.4 實驗結果探討與比較....................................84
第五章 FRP橋面版有限元素模擬..............................92
5.1 FRP有限元素分析模型...................................92
5.1.1 有限元素分析架構....................................92
5.1.2 模型元素簡介........................................93
5.1.3 有限元素模型之建立與材料參數設定....................94
5.2 FRP橋面版構件之有限元素模擬...........................96
5.2.1 BFRP原型版構件之元素收斂性分析及有限元素分析結果....97
5.2.2 GFRP原型版構件之元素收斂性分析及有限元素分析結果...100
5.3 小結.................................................102
第六章 結果與討論........................................105
6.1 結論.................................................105
6.2 建議.................................................106
參考文獻.................................................108
論文參考文獻:[1] Ahmad, S. H. and Plecnik, J. M., "Transfer of Composite Technology to Design and Construction of Bridges," U.S. DOT Report, 1989.
[2] Bakeri, B. and Sunder, S. S., "Concepts for Hybrid FRP Bridge Deck System," Proceedings of the First Materials Engineering Congress, ASCE, Denver, Colorado, August 13-15, Vol. 2, 1990, pp. 1006-1014.
[3] Chen, A. and Davalos, J. F., "Strength Evaluations of Sinusoidal Core for FRP Sandwich Bridge Deck Panels," Composite Structures, Vol. 92, 2010, pp. 1561-1573.
[4] Davalos, J. F., Salim, H. A., Qiao, P. and Lopez-Anido, R., "Analysis and Design of Pultruded FRP Shapesunder Bending," Composites:Part B, Vol. 27, 1996, pp. 295-305.
[5] GangaRao, H. V. S., Zeiina, T.R., Ward, R. and Howser, V., "The Development of Economical Low-Volume Road Bridges," U.S. DOT Report, 1987.
[6] Fiore, V., Bella, G. D., and Valenza, A., "Glass-Basalt/Epoxy Hybrid Composites for Marine Applications," Materials and Design, Vol. 32, 2010, pp.2091-2099.
[7] Hai, N. D., Mutsuyoshi, H., Asamoto, S. and Matsui, T., "Structural Behavior of Hybrid FRP Composite I - Beam," Construction and Building Materials, Vol. 24, 2010, pp. 956-969.
[8] He, J., Liu, Y., Chen, A. and Dai, L., "Experimental investigation of movable hybrid GFRP and concrete bridge deck," Construction and Building Materials, Vol. 26, 2011, pp. 49-64.
[9] Hejll, A., Taljsten, B. and Motavalli, M., "Large Scale Hybrid FRP Composite Girder for Use in Bridge Structure-Theory, Test and Field Application," Composites:Part B, Vol. 36, 2005, pp. 573-585.
[10] Henry, J. A., Deck Girders System for Highway Bridges Using Fiber Reinforced Plastics, M.S. Thesis, North Carolina State University, 1985.
[11] Hirokazu, T., Hitoshi, T., Morio, K. and Takumi, S., "A Case Study on Life-Cycle Assessment of Environmental Aspect of FRP Structures," Third International Conference on FRP Composites in Civil Engineering, Miami, Florida, USA, 2006.
[12] Howard, I., Development of Lightweight FRP Bridge Deck Designs and Evaluations, Master of Science in Civil Engineering, West Virginia University, 2002.
[13] Ji, H. S., Byun, J. K., Lee C. S., Son, B. J. and Ma, Z. J., "Structural Performance of Composite Sandwich Bridge Decks with Hybrid GFRP-Steel Core," Composite Structures, Vol. 93, 2011, pp. 430-442.
[14] Ji, H. S., Song, W. and Ma, Z. J., "Design, Test and Field Application of A GFRP Corrugated-Core Sandwich Bridge," Engineering Structures, Vol. 32, pp. 2010, 2814-2824.
[15] Kim, H. Y., Lee, Y. H. and Lee, S. Y., "Ultimate Strength of A GFRP Deck Panel for Temporary Structures," Composite Structures, Vol. 93, 2011, pp. 528-537.
[16] Kim, H. Y., Park, K. T., Jeong, J., Lee, Y. H., Hwang, Y. K. and Kim, D., "A Pultruded GFRP Deck Panel for Temporary Structures," Composite Structures, Vol. 91, 2009, pp. 20-30.
[17] Kumar, P., Chandrashekhara, K. and Nanni, A., "Structural performance of a FRP bridge deck," Construction and Building Materials, Vol. 18, 2004, pp. 35-47.
[18] Leo, B., "Design of A Fiber-Reinforced Polymer (FRP) Bridge," University of New South Wales, Australian, 2009, pp. 38.
[19] Li, Y. F., Hsu, T. H. and Ting, S. L., "A Study on the Analysis of Fiber Reinforced Plastic Composite Bridge Deck." Eleventh East Asia-Pacific Conference on Structural Engineering & Construction (Easec-11)-Building a Sustainable Environment, Taipei, Taiwan, Nov. 19-21, 2008.
[20] Li, Y. F., and Sung, Y. Y., "A Study on the Shear-Failure Circular Sectioned Bridge Column Retrofitted by Using CFRP Jacketing," Journal of Reinforced Plastics and Composites, Vol. 23, 2004, pp. 811-830.
[21] Li, Y. F., and Sung, Y. Y., "Seismic Repair and Rehabilitation of a Shear-Failure Damaged Circular Bridge Column Using CFRP Jacketing," Canadian Journal of Civil Engineering, Vol. 30, 2003, pp. 819-829.
[22] Li, Y. F., Lin, C. T. and Sung, Y. Y., "A Constitutive Model for Concrete Confined with Carbon Fiber Reinforced Plastics," Mechanics of Materials, Vol. 35, 2003, pp. 603-619.
[23] Liu, Z., Testing and Analysis of a Fiber-Reinforced Polymer (FRP) Bridge Deck, Doctor of Philosophy in Civil Engineering, Virginia Polytechnic Institute and State University, 2007.
[24] Li, W. and Xu, J., "Mechanical properties of basalt fiber reinforced geopolymeric concrete under impact loading," Materials Science and Engineering A, Vol. 505, 2009, pp. 178-186.
[25] Lombardi, N. J. and Liu, J., "Glass fiber-reinforced polymer/steel hybrid honeycomb sandwich concept for bridge deck applications," Composite Structures, Vol. 93, 2011, pp. 1275-1283.
[26] Majumdar, P. K., Strength and Life Prediction of FRP Composite Bridge Deck, Doctor of Philosophy in Engineering Mechanics, Virginia Polytechnic Institute and State University, 2008.
[27] Moon, D. Y., Zi, G., Lee, D. H., Kim, B. M. and Hwang, Y. K., "Fatigue behavior of the foam-filled GFRP bridge deck," Composites:Part B, Vol. 40, 2009, pp. 141-148.
[28] Plecnik, J. M. and Azar, W. A., "Structural Components, Highway Bridge Deck Applications, " International Encyclopedia of Composites, edited by I. Lee and M. Stuart, Vol. 6, 1991, pp. 430-445.
[29] Park, J. M., Shin, W. G., Yoon, and D.J. , "A study of interfacial aspects of epoxy-based composites reinforced with dual basalt and SiC fibers by means of the fragmentation and acoustic emission techniques, " Composites Science and Technology, Vol. 59, 1999, pp. 355-370.
[30] Qiao, P., Davalos, J. F. and Brown, B., "A Systematic Analysis and Design Approach for Single-Span FRP Deck / Stringer Bridges," Composites:Part B, Vol. 31, 2000, pp. 593-609.
[31] Schniepp, T. J., Design Manual Development for a Hybrid, FRPDouble-Web Beam and Characterization of Shear Stiffness in FRP CompositeBeams, MS Thesis, Virginia Polytechnic and State University, USA, 2002.
[32] Schollmayer, M. and Keller, T. , "Modeling of Through-Thickness Stress State in Adhesive Joints Connecting Pultruded FRP Bridge Decks and Steel Girders, " Composite Structures, Vol. 90, 2009, pp. 67-75.
[33] Temeles, A. B., Field and Laboratory Tests of a Proposed Bridge Deck Panel Fabricated from Pultruded Fiber-Reinforced Polymer Components, Master of Science in Civil Engineering, Virginia Polytechnic Institute and State University, 2001.
[34] Wu, Z., Mirmiran, A., Zhu, Z. and Swanson, J., "Flexural Behavior of Prestressed FRP Tubular Bridge Deck," Composites:Part B, Vol. 40, 2009, pp. 125-133.
[35] Zureick, A., "Fiber-Reinforced Polymeric Bridge Decks," Proceedings of the National Seminar on Advanced Composite Material Bridges, FHWA, 1997.
[36] 李有豐、李俊德、徐銘謙,「FRP新材料-賦予橋梁新生命」,營建知訊,第315期,2009,第56~66頁。
[37] 李有豐,李俊德,徐銘謙,「因應綠色運具趨勢拓建自行車道新選擇-FRP新材料-賦予橋梁新生命」,營建知訊,第315期,2009,第56~66頁。
[38] 交通部技術標準規範公路類公路工程部,公路橋梁設計規範,幼獅文化事業公司,1987。
[39] 馬振基,高分子複合材料,正中書局,1995。
[40] 許明發、郭文雄,複合材料,高立圖書有限公司,2004。
[41] 日本土木學會, FRP橋梁-技術とその展望,日本土木學會,2004。
[42] 丁湘蘭, FRP橋面版結構分析與設計之研究 ,碩士論文,國立臺北科技大學土木與防災技術研究所,2002。
[43] 黃耀賢, FRP橋面版試驗與模擬分析 ,碩士論文,中華大學土木工程學系碩士班,2002。
[44] 洪明中,CFRP棒應用於高強度混凝土梁之力學行為探討與耐久性之研究,碩士論文,國立臺北科技大學土木與防災技術研究所,2008。
[45] 程如君,利用有限元素法分析碳纖為棒於混凝土中之握裹實驗,碩士論文,國立臺北科技大學土木與防災技術研究所,2010。
[46] http://earthk2008.blogspot.com/2009/08/blog-post_7804.html
[47] http://ec.europa.eu/research/science-society/science-communication/images/assetbridge.jpg
[48] http://en.structurae.de/files/photos/1634/lleida01.jpg
[49] http://henan.sinaimg.cn/2011/0426/U3715P827DT201104260
72331.jpg
[50] http://img.eemap.com/20090520/200905202151593.jpg
[51] http://jessie-tw.blogspot.com/2009/08/blog-post_17.html
[52] http://www.lightweight-structures.com/images/stories/projects/image-bridge1.jpg
[53] http://s0.geograph.org.uk/geophotos/01/31/14/1311420_0c
ecba2b.jpg
[54] http://static.panoramio.com/photos/original/30372243.jp
g
[55] http://tw.myblog.yahoo.com/jw!oZNUuLOUER5xrNpmZ7TG/arti
cle?m id=11497&prev=11658& next=7679&l=f&fid=66//
[56] http://www.thbtwo.gov.tw/WEB/technical_knowledge/report
11.html
[57] http://www.ttvs.cy.edu.tw/kcc/kcc13/default.htm
[58] http://www.cdxili.cn/image/%E5%88%86%E7%B1%BB/%E7%BC%9D5.jpg
[59] http://www.cnqljg.com/teres/201011/20101124162259312.jp
g
[60] http://www.micksphoto.com/Siuslaw_Bridge_Florence_Late_
Afternoon.jpg
論文全文使用權限:同意授權於2014-02-15起公開