現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:FRP構件物理及化學結合剪力強度之研究 [以論文名稱查詢館藏系統]
論文英文名稱:A Study and Application on the Shear Strength about Connection of FRP Components [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:100
出版年度:101
中文姓名:余忠政
英文姓名:Chung-Cheng Yu
研究生學號:97428012
學位類別:碩士
語文別:中文
口試日期:2012-01-07
論文頁數:156
指導教授中文名:李有豐
口試委員中文名:陳清泉;徐增興;邱佑宗
中文關鍵詞:FRP (Fiber Reinforced Plastics)構件物理續接化學續接混合續接金屬續接器FRP梁續接全FRP棧道
英文關鍵詞:Fiber reinforced plastic (FRP)Physical connectionChemistry connectionBlend connectionOverlapping steelFRP beam overlap jointsFRP pedestrian bridge
論文中文摘要:本研究係先進行FRP構件續接之剪力試驗,試驗方式係分別以螺栓、結構膠各別進行物理、化學搭接試體之製作,以螺栓配搭結構膠進行混合搭接試體之製作。由力量加載過程觀察各型式搭接試體的受力行為,並於試驗結果探討各型式續接試體之極限載重與破壞模式。由試驗結果發現適當的螺栓配置可藉由螺栓剪斷的先後順序提供預警效果。再將此預警效果應用於FRP續接梁試體之製作,其續接方式係將一金屬續接器鎖固於欲進行續接的兩FRP梁中點,以不同續接器的鎖固型式,進行不同續接梁試體的規劃。以三點抗彎加載方式,進行各續接梁試體之試驗。由力量加載過程觀察續接梁的受力行為,並於試驗結果探討各型式續接梁之破壞模式,再將各型的式續接梁與未進行續接之原型梁進行勁度、極限載重及破壞模試之比較,最後提出FRP梁續接型式之建議,供後續相關研究上使用。再藉由化學續試驗之結果規劃一座以結構膠接合的全FRP人行棧道計算及評估,期望藉由此全FRP人行棧道示範案例讓國人對FRP材料的特性有進一步的認識。
論文英文摘要:This study will direct to the overlap and the connection shear test of FRP component.There are two methods to overcome the connection shortcoming of pultruded GFRP component and large span of temporary bridge.The first method is to conduct the bolt, adhesive and blend connection of GFRP component connection. The second method is to configure different bolt quantity and overlapping steel. Proceed a series of shear tests and conduct the force-displacement relationship, stiffness, ultimate strength and failure mode of FRP component from the 3-point bonding test. Study the shortcoming of physical connection and chemistry connection, then better conduct the overlapping configure with all overlapping steel for extra friction. Finally compare the result to each type of overlap and connect beam of stiffness, ultimate load and failure mode. Apply the result to the case of FRP pedestrian bridge.
論文目次:目 錄

中文摘要 i
英文摘要 ii
誌 謝 iii
目 錄 iv
表目錄 vii
圖目錄 x
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 1
1.3 研究目的 3
第二章 文獻回顧 5
2.1 國外FRP接合相關文獻 5
2.2 國內FRP接合相關文獻 15
2.3 相關接合案例介紹 15
第三章 材料性質介紹及實驗規劃 21
3.1 材料性質之介紹 21
3.1.1 纖維強化高分子複合材料之介紹 21
3.1.2螺栓尺寸及強度之介紹 25
3.1.3結構膠性能之介紹 27
3.2 實驗規劃之相關前行測試 29
3.2.1 實驗設備介紹 29
3.2.2 螺栓接合試體抗剪能力測試 31
3.2.3 GFRP構件抗壓試驗 33
3.2.4 構件抗化學接合試體抗剪能力前行試驗 35
3.2.5 梁與梁續接之三點抗彎試驗前行測試 37
3.3 實驗規劃 40
3.3.1 物理接合實驗規劃 40
3.3.2 化學接合實驗規劃 44
3.3.3 混合接合之實驗規劃 46
3.3.4 GFRP續接梁試體之試驗規劃 48
第四章 構件接合剪力實驗 53
4.1 螺栓接合構件剪力強度試驗驗觀察與結果 53
4.1.1單邊配置四只螺栓(4BT1)之試驗 53
4.1.2 配置五只螺栓第一型(5BT1)與第二型(5BT2)之試驗 55
4.1.3 配置六只螺栓第一型(6BT1)與第二型(6BT2)之試驗 59
4.1.4 配置七只螺栓第一型(7BT1)與第二型(7BT2)之試驗 64
4.1.5 螺栓接合試驗結果相關探討 68
4.1.6 小結 69
4.2 結構膠接合之接頭構件剪力強度實驗 73
4.2.1 塗佈結構膠長度為5 cm (C5)試體 73
4.2.2 塗佈結構膠長度為6 cm (C6)試體 74
4.2.3 塗佈結構膠長度為7 cm (C7)試體 74
4.2.4塗佈結構膠長度為8 cm (C8)試體 75
4.2.5 小結 76
4.3 混合接合之接頭構件剪力強度實驗 79
4.3.1 單邊配置4只螺栓第一型之混合接合試體(C4BT1) 79
4.3.2單邊配置5只螺栓第一型之混合接合試體(C5BT1) 81
4.3.3 單邊配置5只螺栓第二型之混合接合試體(C5BT2) 84
4.3.4單邊配置6只螺栓第一型之混合接合試體(C6BT1) 86
4.3.5單邊配置6只螺栓第二型之混合接合試體(C6BT2) 89
4.3.6單邊配置7只螺栓第一型之混合接合試體(C7BT1) 91
4.3.7單邊配置7只螺栓第二型之混合接合試體(C7BT2) 93
4.3.8 小結 95
第五章 實際案例應用 101
5.1 梁與梁的續接 101
5.1.1 GFRP原型梁試驗觀察與結果 101
5.1.2裝置全部續接器之續接梁(BBCA)試驗 103
5.1.3內填續接鋼塊及續接底版之續接梁(BBCI)試驗 106
5.1.4外鎖續接C型鋼塊及續接底版之續接梁(BBCA)試驗 109
5.1.5改變續接底版之續接梁(Type-1 & Type-2)試驗 113
5.1.6改變腹版螺栓鎖固數量之續接梁(2x2)試驗 120
5.1.7小結 123
5.2 相關案例設計及施作 128
5.2.1 人行棧道示範案例各部位構件接合力學測試 129
5.2.2 人行棧道示範案例各部位接合之力學檢核 134
5.2.3人行棧道示範案例施作 140
5.2.4小結 144
第六章 結論與建議 145
6.1 結論 145
6.2建議 151
參考文獻 153
論文參考文獻:參考文獻

[1] Ascione, F. (2009). “Mechanical Behaviour of FRP Adhesive Joints: A Theoretical Model.” Composites: Part B, Vol. 40, pp. 116-124.
[2] Ascione, F. (2009). “Ultimate Behaviour of Adhesively Bonded FRP Lap Joints.” Composites: Part B, Vol. 40, pp. 107-115.
[3] Ascione, F. (2010). “Adhesive Lap-Joints, A Micro-Scale Numerical Investigation.” Mechanics Research Communications, Vol. 37, pp. 169-172.
[4] Ascione, F., Feo, L. and Maceri, F. (2009). “An Experimental Investigation on the Bearing Failure Load of Glass Fibre/Epoxy Laminates.” Composites: Part B, Vol. 40, pp. 197-205.
[5] Ascione, F., Feo, L. and Maceri, F. (2010). “On the Pin-Bearing Failure Load of GFRP Bolted Laminates: An Experimental Analysis on the Influence of Bolt Diameter.” Composites: Part B, Vol. 41, pp. 482-490.
[6] Castro, J. d. and Keller, T. (2010). “Design of Robust and Ductile FRP Structures Incorporating Ductile Adhesive Joints.” Composites: Part B, Vol. 41, pp. 148-156.
[7] Chataigner, S., Caron, J.-F., Duong, V. A., et al. (2010). “Experimental and Numerical Investigation of Shear Strain Along an Elasto-Plastic Bonded Lap Joint.” Construction and Building Materials, Unpublished.
[8] Cottone, A. and Giambanco, G. (2009). “Minimum Bond Length and Size Effects in FRP–Substrate Bonded Joints.” Engineering Fracture Mechanics, Vol. 76, pp. 1957-1976.
[9] Czaderski, C. and Rabinovitch, O. (2010). “Structural Behavior and Inter-Layer Displacements in CFRP Plated Steel Beams – Optical Measurements, Analysis, and Comparative Verification.” Composites: Part B Vol. 41, pp. 276–286.
[10] Fam, A. and Honickman, H. (2010). “Built-up Hybrid Composite Box Girders Fabricated and Tested in Flexure.” Engineering Structures Vol. 32, pp. 10281037.
[11] F.M. daSilva, L., PauloJ.C.dasNeves, R.D.Adams, et al. (2009). “Analytical Models of Adhesively Bonded Joints—Part I: Literature Survey.” International Journal of Adhesion & Adhesives, Vol. 29, pp. 319-330.
[12] Fawzia, S., Zhao, X.-L. and Al-Mahaidi, R. (2010). “Bond–Slip Models for Double Strap Joints Strengthened by CFRP.” Composite Structures, Vol. 92, pp. 2137-2145.
[13] Fink, A., Camanho, P. P., Andrés, J. M., et al. (2010). “Hybrid CFRP/Titanium Bolted Joints: Performance Assessment and Application to a Spacecraft Payload Adaptor.” Composites Science and Technology, Vol. 70, pp. 305-317.
[14] Gustafson, P. A. and Waas, A. M. (2009). “The Influence of Adhesive Constitutive Parameters in Cohesive Zone Finite Element Models of Adhesively Bonded Joints.” International Journal of Solids and Structures, Vol. 46, pp. 2201-2215.
[15] Kapti, S., Sayman, O., Ozen, M., et al. (2010). “Experimental and Numerical Failure Analysis of Carbon/Epoxy Laminated Composite Joints Under Different Conditions.” Materials and Design Materials and Design, Vol. 31, pp. 4933-4942.
[16] Karakuzu, R., Demirgoren, O., Icten, B. M., et al. (2010). “Failure Behavior of Quasi-Isotropic Laminates with Three-Pin Loaded Holes.” Materials and Design, Vol. 31, pp. 3029-3032.
[17] Kim, G.-T., Kim, K.-T., Lee, D.-H., et al. (2010). “Development of a Life Cycle Cost Estimate System for Structures of Light Rail Transit Infrastructure.” Automation in Construction Vol. 19, pp. 308-325.
[18] Kiral, B. G. (2010). “Effect of the Clearance and Interference-Fit on Failure of The Pin-Loaded Composites.” Materials and Design, Vol. 31, pp. 85-93.
[19] Kishore, A. N., Malhotra, S. K. and Prasad, N. S. (2009). “Failure Analysis of Multi-Pin Joints in Glass Fibre/Epoxy Composite Laminates.” Composite Structures, Vol. 91, pp. 266-277.
[20] Lee, H. K., Pyo, S. H. and Kim, B. R. (2009). “On Joint Strengths, Peel Stresses and Failure Modes in Adhesively Bonded Double-Strap and Supported Single-Lap GFRP Joints.” Composite Structures, Vol. 87, pp. 44-54.
[21] Li, Y.-F., Hsu, T.-H. and Ting, S.-L. (2008). “A Study on the Analysis of Fiber Reinforced Plastic Composite Bridge Deck.” Eleventh East Asia-Pacific Conference on Structural Engineering & Construction (EASEC-11)-Building a Sustainable Environment, Taipei, Taiwan, Nov. 19-21.
[22] Li, Y.-F., and Y.-Y. Sung, (2004) “A Study on the Shear-Failure Circular Sectioned Bridge Column Retrofitted by Using CFRP Jacketing,” Journal of Reinforced Plastics and Composites, Vol. 23, No. 8, pp. 811-830.
[23] Li, Y.-F., C.-T. Lin, and Y.-Y. Sung, (2003) “A Constitutive Model for Concrete Confined with Carbon Fiber Reinforced Plastics”, Mechanics of Materials, Vol. 35, 603-619.
[24] Ouyang, Z. and Li, G. (2009). “Cohesive Zone Model Based Analytical Solutions for Adhesively Bonded Pipe Joints under Torsional Loading.” International Journal of Solids and Structures, Vol. 46, pp. 1205-1217.
[25] Ozen, M. and Sayman, O. (2010). “Failure Loads of Mechanical Fastened Pinned and Bolted Composite Joints with Two Serial Holes.” Composites: Part B, unpublished.
[26] Panigrahi, S. K. and Pradhan, B. (2009). “Through-the-Width Delamination Damage Propagation Characteristics in Single-Lap Laminated FRP Composite Joints.” International Journal of Adhesion & Adhesives, Vol. 29, pp.114-124.
[27] Rakesh, P. K., Singh, I. and Kumar, D. (2010). “Failure Prediction in Glass Fiber Reinforced Plastics Laminates with Drilled Hole under Uni-Axial Loading.” Materials and Design, Vol. 31, pp. 3002-3007.
[28] Ren, F. F., Yang, Z. J., Chen, J. F., et al. (2010). “An Analytical Analysis of the Full-Range Behaviour of Grouted Rockbolts Based on a Tri-Linear Bond-Slip Model.” Construction and Building Materials, Vol. 24, pp. 361-370.
[29] Senne, J. L. (2000). “Fatigue Life of Hybrid FRP Composite Beams.” Virginia Polytechnic Institute and State University.
[30] Vallée, T., Correia, J. R. and Keller, T. (2010). “Optimum Thickness of Joints Made of GFPR Pultruded Adherends and Polyurethane Adhesive.” Composite Structures, Vol. 92, pp. 2102-2108.
[31] Zhang, Y., Vassilopoulos, A. P. and Keller, T. (2010). “Mixed-Mode Fracture of Adhesively-Bonded Pultruded Composite Lap Joints.” Engineering Fracture Mechanics, Vol. 77, pp. 2712-2726.
[32] 甘淑婷(2011),「混編纖維複合梁構件之三點抗彎實驗及力學行為探討」,碩士論文,國立臺北科技大學土木與防災研究所,台北。
[33] 洪明中(2008),CFRP棒應用於高強度混凝土梁之力學行為探討與耐久性之研究,碩士論文,國立台北科技大學土木與防災技術研究所,台北。
[34] 日本土木學會(2004),FRP橋梁-技術とその展望。
[35] http://www.martinmarietta.com/Products/bridge.asp?ID=4
[36] http://www.zellcomp.com/
論文全文使用權限:不同意授權