現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:纖維強化高分子複合材料組合式構件力學實驗及行為探討 [以論文名稱查詢館藏系統]
論文英文名稱:A Study on the Mechanics Behavior of the Combination of FRP Components [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:100
出版年度:101
中文姓名:謝富池
英文姓名:Fu-Chr Hsieh
研究生學號:98428006
學位類別:碩士
語文別:中文
口試日期:2012-01-07
論文頁數:86
指導教授中文名:李有豐
口試委員中文名:陳清泉;邱佑宗;徐增興
中文關鍵詞:玄武岩纖維碳纖維組合式構件破壞模式三點抗彎實驗
英文關鍵詞:Basalt FiberCarbon FiberMode of failureCombination of FRP Components3-point bending test
論文中文摘要:本研究為改善現有玻璃纖維高分子(Glass Fiber Reinforced Plastic, GFRP)複合材料構件之勁度不足及為因應不同斷面設計需求,係使用玻璃纖維版(Deck, D)構件及方形管梁(Square Beam, S)構件於其內部分別填充變斷面梁(Transform section beam, T)構件及矩形梁(Rectangle beam, R)構件,組成GFRP組合式構件;分別於構件內部填充兩種不同配置形式之環氧樹脂砂漿,並於構件外側分別貼覆90°方向之不同種類纖維貼片,包括玄武岩纖維(Basalt Fiber)貼片與碳纖維(Carbon Fiber)貼片,希望改變其原本之破壞模式。後續進行八組複合版試體及五組複合梁試體之三點抗彎試驗,藉由各組試體實驗所得之極限載重、勁度、破壞模式等,與標準組相互比較,可知填充GFRP方管後可有效提升其勁度。於內部填充環氧樹脂砂漿之構件以第一種配置形式之平均強度與勁度皆優於第二種配置形式,其破壞模式以第二種配置形式較為嚴重。於外部貼覆90°方向之纖維貼片後,其強度明顯提升,並有效改善第二種環氧樹脂砂漿配置形式之破壞模式。最後利用材料商提供之GFRP之相關物理性質以及Euler梁及Timoshenko梁理論分別針對梁、版構件進行理論分析,將其理論分析及實驗結果進行比較,進而提出一GFRP組合式複合材料構件之改善方式。
論文英文摘要:In this study, to improving the GFRP components stiffness and design requirements in response to different sections. Using the GFRP transform section beam and rectangle beam into the deck and square beam. Filling two types of the epoxy mortar. The GFRP components wrapping different fiber sheet consisting of carbon fiber and basalt fiber. A series of beam tests will conduct under 3-point bending test to know the force-displacement relationship, stiffness, failure strength and failure mode of the combination beam. The Timoshenko beam theory and Euler beam theory were applied to analyze the profiles, using material properties estimated. Finally compare the experimental result and numerical result. Both results show the stiffness of GFRP beam filled with epoxy mortar is twice larger than GFRP beam.
論文目次:中 文 摘 要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
表 目 錄 vii
圖 目 錄 ix
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的及內容 1
第二章 文獻回顧 3
2.1 FRP複合梁、版之相關研究 3
2.2 FRP於橋梁之應用案例 8
第三章 材料介紹與實驗規劃 11
3.1 FRP複合材料之介紹 11
3.1.1 FRP複合材料組成與特性 11
3.1.2 組合式構件材料之介紹 14
3.2 實驗材料 15
3.2.1 纖維貼片 15
3.2.2構件斷面選擇 15
3.2.3 環氧樹脂 17
3.3 實驗規劃與編號 19
3.3.1 試體編號 20
3.4 GFRP組合式構件製作過程 22
3.4.1 組合FRP構件過程 23
3.4.2 填充環氧樹脂砂漿過程 24
3.4.3 纖維貼片貼覆過程 25
3.5 FRP組合式構件之力學性質實驗 27
3.5.1 實驗方法 28
3.5.2 實驗設備 28
第四章 實驗觀察與結果 31
4.1 GFRP組合式版構件相關實驗觀察與結果 31
4.1.1 GFRP原型版構件實驗觀察與結果 32
4.1.2 GFRP版構件內填變斷面方管實驗觀察與結果 34
4.1.3 GFRP版構件內填變斷面方管與第一種環氧樹脂砂漿配置型式之實驗觀察與結果 36
4.1.4 GFRP版構件內填變斷面方管與第一種環氧樹脂砂漿配置型式外層貼覆玄武岩纖維貼片之實驗觀察與結果 38
4.1.5 GFRP版構件內填變斷面方管與第一種環氧樹脂砂漿配置型式外層貼覆碳纖維貼片之實驗觀察與結果 40
4.1.6 GFRP版構件內填變斷面方管與第二種環氧樹脂砂漿配置型式之實驗觀察與結果 42
4.1.7 GFRP版構件內填變斷面方管與第二種環氧樹脂砂漿配置型式外層貼覆玄武岩纖維貼片之實驗觀察與結果 44
4.1.8 GFRP版構件內填變斷面方管與第二種環氧樹脂砂漿配置型式外層貼覆碳纖維貼片之實驗觀察與結果 46
4.2 GFRP版構件之實驗結果討論與破壞模式分析 48
4.3 GFRP組合式梁構件相關實驗觀察與結果 51
4.3.1 GFRP原型梁構件實驗觀察與結果 51
4.3.2 GFRP梁構件內填環氧樹脂砂漿實驗觀察與結果 53
4.3.3 GFRP梁構件內填矩形斷面方管實驗觀察與結果 55
4.3.4 GFRP梁構件內填矩形斷面方管與第一種環氧樹脂砂漿配置型式實驗觀察與結果 57
4.3.5 GFRP梁構件內填矩形斷面方管與第二種環氧樹脂砂漿配置型式實驗觀察與結果 58
4.4 GFRP組合式梁構件之實驗結果討論與破壞模式分析 60
第五章 力學理論與分析 63
5.1 版構件之理論計算結果 64
5.1.1版構件之計算結果 65
5.1.2 組合式版構件內填環氧樹脂砂漿之計算結果 65
5.2 梁構件之理論計算結果 66
5.2.1 梁構件之計算結果 72
5.2.2 組合式梁構件內填環氧樹脂砂漿之計算結果 72
第六章 結論與建議 74
6.1 結論 74
6.2 建議 79
參考文獻 80
附錄 GFRP組合式梁構件理論計算 83
論文參考文獻:[1] Cheng, L. and Karbhari, V. M. (2006). “New Bridge System Using FRP Composites and Concrete: A State of the Art Review.” Wiley Inter Science, Vol. 8, pp. 143-154.
[2] Davalos, J. F., Salim, H. A., Qiao, P. and Lopez-Anido, R. (1996). “Analysis and Design of Pultruded FRP Shapes under Bending.” Composites Part B: 27B, pp. 295-305.
[3] Fam, A. and Honickman, H. (2010). “Built-up Hybrid Composite Box Girders Fabricated and Tested in Flexure.” Engineering Structures, No. 32, pp. 1028-1037.
[4] Gautam, B. P. and Matsumoto, T. (2009). “Shear Deformation and Interface Behavior of Concrete-Filled CFRP Box Beams.” Composite Structures, Vol. 89, pp. 20-27.
[5] Hejll, A., Taljsten, B. R. and Motavalli, M. (2005). “Large Scale Hybrid FRP Composite Girders for Use in Bridge Structures-Theory, Test and Field Application.” Composites Part B, No. 36, pp. 573-585.
[6] Hollaway, L. C. (2010). “A Review of the Present and Future Utilisation of FRP Composites in the Civil Infrastructure with Reference to Their Important In-Service Properties.” Construction and Building Materials, Vol. 24, pp. 2419-2445.
[7] Hai, N. D., Mutsuyoshi, H., Asamoto, S. and Matsui, T. (2010). “Structural Behavior of Hybrid FRP Composite I-Beam.” Construction and Building Materials, Vol. 24, pp. 956-969.
[8] Kumar, P., Chandrashekhara, K. and Nanni, A. (2004). “Structural Performance of a FRP Bridge Deck.” Construction and Building Materials, Vol. 18, pp. 35-47.
[9] Leo, B. (2009). “Design of a Fiber-Reinforced Polymer (FRP) Bridge.” University of New South Wales, Australian.
[10] Manalo, A. C., Aravinthan, T. and Karunasena, W. (2010). “Flexural Behavior of Structural Fibre Composite Sandwich Beams in Flatwise and Edgewise Positions.” Composite Structures, Vol. 92, pp. 984-995.
[11] Nordin, H., Taljsten, B. (2003). “Testing of Hybrid FRP Composite Beams in Bending.” Composites Part B: Engineering, No. 35, pp. 27-33.
[12] Neely, W. D., Cousins, T. E. and Lesko, J. L. (2004). “Evaluation of In-Service Performance of Tom’s Creek Bridge Fiber-Reinforced Polymer Superstructure.” Journal of Performance of Constructed Facilities, Vol. 18, No. 3, pp. 147-158.
[13] Neto, A. B. D. S. S. and Rovere, H. L. L. (2007). “Flexural Stiffness Characterization of Fiber Reinforced Plastic (FRP) Pultruded Beams.” Composite Structures, Vol. 81, pp. 274-282.
[14] Qiao, P., Davalos, J. F. and Brown, B. (2000). “A Systematic Analysis and Design Approach for Single-Span FRP Deck/Stringer Bridges.” Composites Part B 31, pp. 593-609.
[15] Seible, F., Karbhari, V. M. and R. Burgueno. (1999). “King’s Stormwater Channel and I-5/Gilman Bridge, USA.” Structural Engineering International, Vol. 9, No. 4, pp. 250-253.
[16] Senne, J. L. (2000). “Fatigue Life of Hybrid FRP Composite Beams.” MS Thesis. Virginia Polytechnic Institute and State University, USA.
[17] Schniepp, T. J. (2002). “Design Manual Development for a Hybrid, FRP Double-Web Beam and Characterization of Shear Stiffness in FRP Composite Beams.” MS Thesis, Virginia Polytechnic and State University, USA.
[18] Schumacher, A. and Herwig, A. (2010). “Design of FRP-Profiles and All-FRP-Structures,” Fiber Composites.
[19] Waldron, C. J. (2001). “Determination of the Design Parameters for the Route 601 Bridge: A Bridge Containing the Strongwell 36 in. Hybrid Composite Double Web Beam.” MS Thesis, Virginia Polytechnic Institute and State University, USA.
[20] Zhao, L., Burgueiio, R., Rovere, H, L., Seible, F. and Karbhari, V. (2000). “Preliminary Evaluation of the Hybrid Tube Bridge System,” Department of Structural Engineering University of California, San Diego.
[21] ASTM D 695, Standard Test Method for Compressive Properties of Rigid Plastics.
[22] ASTM D 792, Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement.
[23] ASTM D 3410, Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials with Unsupported Gage Section by Shear Loading.
[24] CNS 4396 (ASTM D638) (JIS K7113),塑膠之抗拉性能試驗法。(Method of Test for Tensile Properties of Plastic.)
[25] CNS 4392 (ASTM D790) (JIS K7203),硬質塑膠之撓曲性能測定法。(Method of Test for Flexural Properties of Rigid Plastics.)
[26] CNS 13062 (ASTM D3776) (JIS K7071),碳纖維及環氧樹脂預浸材料檢驗法。(Methods of Test for Prepreg of Carbon Fiber and Epoxy Resins.)
[27] CNS 13065 (ASTM D2471) (JIS K 6833),環氧樹脂及硬化劑黏度測定法。(Methods of Test for Viscosity of Epoxy Resins and Hardeners.)
[28] 李有豐、丁湘蘭(2002),“FRP橋面版結構分析與設計之研究”,第六屆結構工程研討會論文集,P05,屏東縣墾丁。
[29] 甘淑婷(2011),「混編纖維複合梁構件之三點抗彎實驗及力學行為探討」,碩士論文,國立臺北科技大學土木與防災研究所。
[30] 黃耀賢(2003),「FRP橋面版試驗與模擬分析」,碩士論文,中華大學土木工程學系。
[31] http://www.ncn-uk.co.uk/DesktopDefault.aspx?tabindex=84&tabid=358
[32] http://www.youtube.com/watch?v=8e36gUTytjA
[33] http://www.compositeworldwide.com/CSS.html
[34] http://www.fiberline.com/structures/profiles-and-decks-bridges/profiles-footbridges-and-cycle-bridges/case-stories-footbridge/fiberline-bridge-kolding
[35] http://www.mdacomposites.org/mda/GlobalBridgesPEDESTRIAN.pdf
[36] http://www.fiberline.com/structures/profiles-and-decks-bridges/profiles-footbridges-and-cycle-bridges/case-stories-footbridge/pontresina-bridge-switzerla
[37] http://www.creativepultrusions.com/LitLibrary/products/superdeck/laurellickinstall.pdf
[38] http://www.gkdmetalfabrics.com/projects/lerida_bridge.html
[39] http://www.vectorgroup.com/pdfs/Aslan_FRP_Bridge_Project_List.pdf
論文全文使用權限:不同意授權