現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:波形鋼腹板預力箱型梁之實驗成果探討 [以論文名稱查詢館藏系統]
論文英文名稱:Study on Experimental Results of Prestressed Box Girder with Corrugated Steel Web [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:100
出版年度:101
中文姓名:陳盈如
英文姓名:Ying-Ru Chen
研究生學號:98428004
學位類別:碩士
語文別:中文
口試日期:2012-01-13
論文頁數:161
指導教授中文名:宋裕祺
口試委員中文名:張國鎮;洪曉慧;尹世洵
中文關鍵詞:波形鋼板波形鋼腹板實驗有限元素分析
英文關鍵詞:corrugated steel webexperiments with corrugated steel webfinite element analysis
論文中文摘要:波形鋼腹板複合橋係利用波形鋼腹板取代傳統預力混凝土梁之混凝土腹板,可使上部結構輕量化,並進而降低傳遞至下部結構之地震力,降低橋柱地震力需求,對於大跨徑跨河橋,此類橋型具有相當之優勢。
波形鋼腹板預力箱型梁複合橋除了具備自重輕之特點外,波形鋼腹板的垂直穩定性佳,具高剪力挫屈強度,且波形鋼腹板具有容許沿橋軸向大變形的特性,使得外加預力更為容易有效導入混凝土中。近年來因外置預力及高強度混凝土技術愈趨成熟,波形鋼腹板橋在世界各國之實際應用大幅增加。目前國內也已完成首座波形鋼腹板預力箱型梁複合橋之設計與施工,且該橋主梁為三箱室,算是此類橋型之首創。
為更進一步瞭解此類橋型之實際結構力學行為,配合國家地震工程研究中心進行波形鋼腹板預力箱型梁之相關性能實驗。並利用有限元素分析軟體ANSYS模擬波形鋼腹板箱型梁,於分析模式中同時考慮幾何非線性及材料非線性以便提高分析模擬之精確性,所得之分析結果與試驗分析成果比對,藉以探討波形鋼腹板之結構特性。
論文英文摘要:Prestressed girder with corrugated steel web is a new type of structure. In which, the corrugated steel web is employed to substitute web of the traditional concrete box girder. Therefore, it can reduce the use of concrete as well as self-weight effectively, and increase shear strength of the web. The use of corrugated steel web has many advantages such as light girder, economy cost, artistic appearance, high shear strength and rapid construction. The application of it to practical bridge engineering becomes popular in last decade, the study on its structure behavior is thus important.
In Taiwan, the construction of the pre-stressed box girder with corrugated steel web has three chambers in main beam had already finished. As well known that the mechanics of this kind of composite box girder was complex. In order to investigate more detailed behaviors of it and ensure the safety of the designs, sets of experiments including bridge’s stabilization, the strength of the connection between the steel web and concrete flange as well as the experiment of the distorted model of bridge had performed at NCREE. In this thesis the main goal is to construct the analytical models considered the effect of geometric and material nonlinear for simulation and analysis by using the FEM software, ANASYS. The FEM’s analytical results seem well consistent with the experimental measurements and theoretical solutions by comparison. And the 3D FEM analysis models are useful to predict the structural behavior of the box girder with steel web. Nevertheless, even though the 3D FEM analysis is a powerful tool for analysis with accuracy, it might not employ with ease by engineers and cost time during the analysis procedure actually. Therefore, to benefit the engineers in design and analysis of which, the establishment of a simplified model or method is still a room in the future study.
論文目次:目錄

中文摘要 i
英文摘要 ii
誌謝 iv
目錄 vi
表目錄 x
圖目錄 xi
第一章 緒論 1
1.1 研究背景與目的 1
1.2 研究內容與方法 2
1.3 章節內容概述 3
第二章 文獻回顧 5
2.1 前言 5
2.2 歐美各國波形鋼腹板研究概況 6
2.3 日本波形鋼腹板研究概況 11
2.4 中國大陸波形鋼腹板研究概況 13
2.5 台灣波形鋼腹板研究概況 15
2.6 討論 18
第三章 波形鋼腹板力學行為探討 19
3.1 前言 19
3.2 波形鋼腹板力學特性 19
3.3 波形鋼腹板剪力挫屈形式 22
3.4 波形鋼腹板接頭型式 27
3.4.1埋入式水平抗剪強度 30
3.4.2埋入式斷面抗扭強度 35
第四章 波形鋼腹板預力箱型梁性能 試驗之實驗規劃 39
4.1 實驗目的 39
4.2 試體基本設計尺寸 40
4.2.1 穩定實驗之試體規劃 40
4.2.2 接頭強度實驗之試體規劃 42
4.2.3全橋縮尺實驗試體 43
4.3 試體製作 45
4.4 實驗配置 57
4.4.1穩定實驗 57
4.4.2 接頭強度實驗 62
4.4.3 全橋縮尺實驗 70
第五章 波形鋼腹板數值分析 77
5.1 前言 77
5.1.1 有限元素基本概念 77
5.1.2 材料之適用元素 81
5.1.2.1 Shell181元素 81
5.1.2.1.1 SHELL181元素說明 81
5.1.2.1.2 SHELL181元素輸入資料 82
5.1.2.1.3 SHELL181元素設定限制 83
5.1.2.2 Soild65元素 84
5.1.2.2.1 Soild65元素說明 84
5.1.2.2.2 Soild65元素輸入資料 85
5.1.2.2.3 Soild65元素設定限制 86
5.1.2.2.4 Soild665非線性分析設定要點 87
5.1.2.3 Link8元素 88
5.1.2.3.1 Link8元素說明 88
5.1.2.3.2 Link8元素輸入資料 89
5.1.2.3.3 Link8元素設定限制 90
5.2 材料組成律 90
5.2.1 混凝土受力行為 90
5.2.1.1 Mander圍束混凝土應力應變曲線 91
5.2.1.2 Mander非圍束混凝土應力應變曲線 96
5.2.1.3 標準混凝土試體抗壓 97
5.2.2 波形鋼腹板組成律 98
5.3 穩定實驗模型之建立 100
5.3.1材料性質及參數 100
5.3.2邊界條件 100
5.3.3有限元素模型 101
5.4 全橋縮尺實驗模型之建立 102
5.4.1材料性質及參數 102
5.4.2邊界條件 104
5.4.3有限元素模型 105
第六章 波形鋼腹板實驗與分析結果討論 107
6.1 穩定實驗與有限元素分析結果 107
6.1.1 穩定實驗結果 107
6.1.2 穩定實驗有限元素分析 114
6.1.3 討論 116
6.2 埋入式接頭強度實驗與計算結果比較 121
6.2.1 埋入式接頭強度實驗 121
6.2.1.1 水平剪力強度實驗結果 121
6.2.1.2 斷面抗扭強度實驗結果 123
6.2.2 討論 126
6.3 全橋縮尺實驗與有限元素分析結果 127
6.3.1 全橋縮尺實驗結果 127
6.3.2 全橋縮尺有限元素分析 136
6.3.3 討論 136
第七章 結論與建議 143
7.1 結論 143
7.2 建議 144
參考文獻 147
附錄A:水平抗剪強度計算流程 153
附錄B:斷面抗扭強度計算流程 159
論文參考文獻:參考文獻

[1] Abbas, H. H. Sause, R. and Driver, R. G., "Analysis of Flange Transverse Bending of Corrugated Web I-Girders under In-Plane Loads," Journal of Structure Engineering, 2007(a), pp. 347-355.
[2] Abbas, H. H. Sause, R. and Driver, R. G., "Simplified analysis of flange transverse bending of corrugated web I-girders under in-plane moment and shear," Engineering Structures, no. 29, 2007(b), pp. 2816–2824
[3] ANSYS User’s Manual version 11.0, Sweanson Analysis Systems, Inc, 2007
[4] Chan, C.L. Khalid, Y.A. Sahari, B.B. and Hamouda, A.M.S., "Finite element analysis of corrugated web beams under bending," Journal of Constructional Steel Research, vol. 58, 2002, pp. 1391-1406.
[5] Driver, R. G. Abbas, H. H. and Sause, R., "Shear Behavior of Corrugated Web Bridge Girders," Journal of Structure Engineering, 2006, pp. 195-203.
[6] Easley, J.T., "Buckling Formulas for Corrugated Metal Shear Diaphragms," Journal of the Structural Division, ASCE, vol. 101, no. 7, 1975, pp. 1403-1407.
[7] Eldib, MEA.-H., "Shear buckling strength and design of curved corrugated steel webs for bridges," Journal of Constructional Steel Research, no. 65, 2009, pp. 2129-2139.
[8] Elgaaly, M. Hamilton, R.W. and Seshadri, A., "Shear Strength of Beams with Corrugated Webs," Journal of Structural Engineering, ASCE, vol. 122, no. 4, 1996, pp. 390-398.
[9] Elgaaly, M. Seshadri, A. and Hamilton, R.W., "Bending Strength of Steel Beams with Corrugated Webs," Journal of Structural Engineering, ASCE, vol. 123, no. 6, 1997, pp. 772-782.
[10] Elgaaly, M. and Seshadri, A., "Depicting the Behavior of Girders with Corrugated Websup to Failure Using Non-linear Finite Element Analysis," Advances in Engineering Software, 1998, pp.195-208.
[11] Huang, L. Hikosaka, H. and Komine, K., "Simulation of accordion effect in corrugated steel web with concrete flanges," Computers and Structures, no. 82, 2004, pp. 2061–2069.
[12] Johnson, R. and Cafolla, J., "Corrugated Webs in Plate Girders for Bridges," Structures and Buildings, vol. 123, no. 2, 1997, pp.157-164.
[13] Luo, R. and Edlund, B, "Ultimate Strength of Girders with Trapezoidally Corrugated Webs under Patch Loading," Thin-walled Structures, vol. 26, no.4, 1996(a), pp.135-156.
[14] Luo, R. and Edlund, B., "Shear Capacity of Plate Girders with Trapezoidally Corrugated Webs," Thin-walled Structures, vol. 26, no.1, 1996(b), pp.19-44.
[15] Machimdamrong, C. Watanabe, E. and Utsunomiya, T., "Shear Buckling of Corrugated Plates With Edges Elastically Restrained Against Rotation," International Journal of Structural Stability and Dynamics, vol. 4, no. 1, 2004, pp. 89–104.
[16] Mander, J. B. Priestley, M. J. N. and Park, R., "Theoretical Stress‐Strain Model for Confined Concrete," Journal of Structural Engineering, ASCE, vol. 114, no. 8, 1988(a), pp. 1804-1826.
[17] Mander, J. B. Priestley, M. J. N. and Park, R., "Observed Stress-strain Behavior on Confined Concrete," Journal of Structural Engineering, ASCE, vol. 114, no. 8, 1988(b), pp. 1827-1849.
[18] Metwally, A.El and Loov, R.E., "Corrugated steel webs for prestressed concrete girders." Materials and Structures, vol. 36, 2003, pp. 127-134.
[19] Mirza, S. A. and MacGregor, J. G., "Variability of Mechanical Properties of Reinforcing Bars," Journal of the Structural Division, vol. 105, no. 5, 1979, pp. 921-937.
[20] Moon, J. Yi, J. Choi, B.H. and Lee,H.E., "Shear strength and design of trapezoidally corrugated steel webs," Journal of Constructional Steel Research, 2009, pp. 1198-1205.
[21] Pasternak, H. and Kubieniec, G., "Plate Girders With Corrugated Webs," Journal of Civil Engineering And Management, vol. 16, no. 2, 2010, pp. 166–171.
[22] Popovics, S. "A numerical approach to the conplete stress-strain curve of concrete," Cement and Concrete Research, vol. 3, no. 5, 1973, pp. 583-599.
[23] Yi, J. Gil, H. Youm, K. and Lee, H., "Interactive shear buckling of trapezoidally corruagated steel webs," Engineering Structures, 2007, pp. 1659-1666.
[24] 波形鋼板ウエブ合成構造研究會,波浪形鋼腹板PC橋計畫手冊(案)與Q&A,平成10年12月(1998)。
[25] 李宏江,葉見曙,萬水,錢培舒,蔣正國,「波形鋼腹板預應力混凝土箱梁的試驗研究」,中國公路學報,第17卷,第4期,2004年,第31-36頁。
[26] 劉劍萍,正司明夫,小林寬,「淺談合成結構—波形鋼腹板箱梁橋的設計」,世界橋梁,第3期,2003年,第5-8頁。
[27] 侯文葳,「日本北陸新幹線波形鋼腹 P C 箱形結合梁橋」,世界軌道交通,第2期,2004年,第21-24頁。
[28] 徐強,萬水等,波形鋼腹板PC組合箱梁橋設計與應用,北京,人民交通出版社,2009年9月。
[29] 小倉 裕史,波形鋼板ウェブPC橋の変形応力解析法に関する研究,碩士論文,京都大学工学部地球工学科,京都,2005年。
[30] 周長曉,王福敏,宋瓊瑤,「波形鋼腹板穩定的理論分析及試驗研究」,公路交通技術,第1期,2005年,第54-57頁。
[31] 中日本高速道路株式會社,設計要領第二集,橋梁建設篇,平成20年8月(2008)
[32] 張貽翔,波浪形鋼腹鈑預力混凝土箱型橋樑之抗扭行為,碩士論文,國立成功大學,台南,1999年。
[33] 張耀聰,波浪形鋼腹板預力混凝土箱型橋樑分析,碩士論文,國立成功大學,台南,1997年。
[34] 陳錦林,莊文宏,洪振銘,「國內首座波形鋼腹板橋之設計與分析」,土木水利,第34卷,第6期,2007年,第62-71頁。
[35] 陳靜雯,波浪形鋼腹鈑預力混凝土箱型橋梁之抗彎研究,碩士論文,國立成功大學,台南,1998年。
[36] 勝俣 盛,溝江 慶久,町田 文孝,越後「滋波形鋼板ウェブの耐久性を探る」,川田技報,第19卷,2000年,第80-81頁。
[37] 宋裕祺,林正偉,王傳輝,「有限元素法在鋼橋局部應力分析之應用與探討」,中華技術,第71期,2006年,第62-73頁。
[38] 王芳,波形鋼腹板組合箱梁力學性能試驗研,碩士論文,湖南大學工程學院橋梁與隧道工程,湖南,2007年。
[39] 王福敏,周長曉,張長青,「波形腹板箱梁鋼腹板穩定試驗研究」,公路交通技術,第5期,2003年,第53-56頁。
[40] 王新敏,ANSYS工程結構數值分析,北京,人民交通出版社,2007年10月,第230-235頁。
[41] 王文,波形鋼腹板箱梁扭轉效應和畸變效應的分析與模型試驗研究,碩士論文,湖南大學工程學院橋梁與隧道工程,湖南,2008年。
[42] 吳文清,葉見曙,萬水,錢培舒,王健,「波形鋼腹板組合箱梁在對稱載入作用下剪力滯效應的試驗研究」,中國公路學報,第16卷,第2期,2003年,第48-51頁。
論文全文使用權限:不同意授權