現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:水泥固化法配合化學改質活性碳以抑制污染土壤汞溶出之研究 [以論文名稱查詢館藏系統]
論文英文名稱:Cement solidification and chemically modified activated carbon for suppression of mercury leaching from contaminated soil [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:100
出版年度:101
中文姓名:辜珮琪
英文姓名:Pei-Chi Ku
研究生學號:99428069
學位類別:碩士
語文別:中文
口試日期:2012-07-20
論文頁數:89
指導教授中文名:林鎮洋;席行正
指導教授英文名:Jen-Yang Lin;Hsing-Cheng Hsi
口試委員中文名:張添晉;林正芳
口試委員英文名:Tien-Chin Chang;Cheng-Fang Lin
中文關鍵詞:固化/穩定化化學改質活性碳毒性特性溶出程序(TCLP)
英文關鍵詞:Solidification/ stabilizationmercurychemically modified activated carbontoxicity characteristic leaching procedure (TCLP)
論文中文摘要:汞在許多重金屬中是一大焦點,因其具有獨特的特性:高毒性、揮發性、在生物體中的累積性,因此汞已被確認為是一種有毒的世紀危害。無機汞及有機汞皆可嚴重的影響健康,有機汞的毒性比無機汞來得高,且生物體可把無機汞轉換為有機汞,因此控制汞污染廢棄物中的無機汞溶出是非常重要的。本研究利用水泥固化法配合化學改質活性碳來抑制土壤中汞的溶出,並分別比較養護7天及28天之TCLP溶出濃度,化學改質為溴化鈉改質活性碳及元素硫改質活性碳,原土未添加水泥及吸附劑之TCLP濃度為2.54×10-1 mg/L,超過我國法規標準(0.2 mg/L)。有添加吸附劑之固化試體皆可達到TCLP溶出標準,惟28天時濃度比7天高,可能之原因為pH值上升,造成固化試體內汞的再溶出,以及水灰比過低,造成汞在固化體內無法達到穩定狀態。因此後續研究建議應使pH值下降,以及適當的水灰比防止汞的再溶出。
論文英文摘要:Mercury is receiving a major focal among many of the heavy metals due to its unique characteristics, such as its high toxicity, volatility and ability to bioaccumulate.
Mercury has been recognized as a toxic hazard for centuries. Both inorganic and organic mercury can cause serious health effects. Organic forms of mercury are generally more toxic than inorganic forms, but it is possible for inorganic mercury to be biologically transformed into organic mercury. Therefore, it is important to control inorganic mercury leaching from mercury containing wastes. In this study, cement solidification accompanied with chemically modified activated carbon was used to inhibit the dissolution of mercury(Hg)from the contaminated soil. The research parameters for examining the leachability of Hg via the toxicity characteristic leaching procedure (TCLP)tests included the cement adding amount, the curing duration(seven days and 28 days), the addition of chemically modified activated carbon (bromine and sulfur treated), and the water / cement ratio. The TCLP leaching concentration of Hg, for the original soil without added cement and carbon adsorbent was 2.54×10-1 mg / L, which exceeded Taiwan's regulation standard (i.e., 0.2 mg / L). The leaching concentrations for soil samples after adding cement and carbon complied with the regulation standard, but 28 day curing caused a greater leaching concentration than 7 day curing. It may be explained that the increasing pH, after 28 day curing led to the enhancing dissolution of Hg from the contaminated soil. Additionally, the reducing water / cement ratio may also cause an increase in Hg leaching. Future approach in suppressing the release of Hg from contaminated soil should be focused on lower the pH and operating the solidification under ab appropriate water / cement ratio to avoid re-dissolution of Hg.
論文目次:中文摘要.....i
英文摘要.....ii
誌謝.....iv
目錄.....v
表目錄.....viii
圖目錄.....x
第一章 緒論.....1
1.1 研究動機.....1
1.2 研究目的.....2
1.3 研究方法與流程.....2
第二章 文獻回顧.....4
2.1 土壤污染物來源及傳輸特性.....4
2.1.1 土壤污染物類型.....4
2.1.2 重金屬污染物在土壤中之動態變化.....8
2.1.3 重金屬污染物與土壤結合力之比較.....10
2.1.4 與重金屬污染物宿命有關之土壤性質.....10
2.2 汞.....11
2.2.1 汞之基本物化性質.....11
2.2.2 汞之污染來源及途徑.....11
2.2.3 土壤中汞之容許限量.....13
2.2.4 汞在土壤的傳輸現象.....13
2.3 固化/穩定化介紹.....14
2.3.1 固化/穩定化之定義及目的.....14
2.3.2 固化/穩定化之原理與機制及影響因素.....16
2.3.3 固化/穩定化技術分類及優缺點.....17
2.3.4 水泥固化法.....18
2.4 受汞污染之土壤固化/穩定化研究.....19
2.4.1 影響受汞污染土壤固化/穩定化因素.....19
第三章 研究方法.....24
3.1 實驗材料及設備.....24
3.1.1 實驗材料.....24
3.1.2 實驗藥品.....26
3.1.3 實驗設備.....26
3.2 實驗流程.....26
3.2.1 土壤基本性質分析.....27
3.2.2 土壤汞總量分析.....35
3.2.3 固化試體之製作及抗壓強度試驗.....38
3.2.4 毒性特性溶出程序試驗(TCLP).....39
3.2.5 溶出百分比計算.....41
第四章 結果與討論.....52
4.1 土壤之物理化學性質.....52
4.1.1 基本性質分析.....52
4.2毒性特性溶出程序試驗(TCLP)之總汞濃度.....54
4.2.1 毒性特性溶出程序(TCLP)之結果.....54
4.2.2 抗壓強度之結果.....78
第五章 結論與建議.....84
5.1 結論.....84
5.2 建議.....85
參考文獻.....86
論文參考文獻:【1】Carehhini, A., Dastoil, S., Ferrari, G., Saponaro, S., Bonomo, L., Popris, L. C., Gabellini, M., “Sequential solidification/stabilization and thermal process under
vacuum for the treatment of mercury in sediments,” Journal of soils and sediments, vol. 10, no. 8, 2010, pp. 1646-1656.

【2】Shi, C., and Fernández-Jiménez, A.,“Stabilization/solidification of hazardous and
radioactive wastes with alkali-activated cements,” Journal of Hazardous Materials, vol. 137, 2006, pp. 1656-1663.

【3】López, F. A., López-Delgado, A., Padilla, I., Tayibi, H., Alguacil, F. J., “Formation of metacinnabar by milling of liquid mercury and elemental sulfur for long term
mercury storage,” Science of the Total Environment, vol. 408, 2010, pp 4341-4345.

【4】Sanchez, F., Mattus, C. H., Morris, M. I., Kosson1, D. S., “Use of a new leaching test framework for evaluating alternative treatment processes for mercury-contaminated soils,” ENVIRONMENTAL ENGINEERING SCIENCE, vol. 19, 2002, pp 251-269.

【5】Piao, H., and Bishop, P. L., “Stabilization of mercury-containing wastes using sulfide,” Environmental Pollution, vol. 139, 2006, pp 498-506.

【6】Wang, J., Fenga, X., Anderson, C. W. N., Xing, Y., Shang, L., “Remediation of mercury contaminated sites - A review,” Journal of Hazardous Materials, vol. 221-222, 2012, pp 1-18.

【7】Zhuang, J. M., Lo, T., Walsh, T., Lam, T., “Stabilization of high mercury contaminated brine purification sludge,” Journal of Hazardous Materials, vol.
B113, 2004, pp 157-164.


【8】Zhang, J., and Bishop, P. L., “Stabilization/solidification (S/S) of mercury-containing wastes using reactivated carbon and Portland cement,”
Journal of Hazardous Materials, vol. 92, 2002, pp 199-212.

【9】Svensson, M., and Allard, B., “Leaching of mercury-containing cement monoliths aged for one year,” Waste Management, vol. 28, 2007, pp 597-603.

【10】Fuhrmann, M., Melamed, D., Kalb, P. D., Adams, J. W., Milian, L. W., “Sulfur polymer solidification/stabilization of elemental mercury waste,” Waste Management, vol. 22, 2002, pp 327-333.

【11】Rodríguez, O., Padilla, I., Tayibi, H., López-Delgado, A., “Concerns on liquid mercury and mercury-containing wastes: A review of the treatment technologies
for the safe storage,” Journal of Environmental Management, vol. 31, 2012, pp 197-205.

【12】Scanferla, P., Ferrari, G., Pellay, R., Ghirardini, A. V., Zanetto, G., Libralato, G.,“An innovative stabilization/solidification treatment for contaminated soil remediation: demonstration project results,” Journal of Soils Sediments, vol. 9, 2009, pp 229-236.

【13】Chena, Q., Kea, Y., Zhanga, L., Tyrerb, M., Hills, C. D., Xuea, G., “Application of accelerated carbonation with a combination of Na2CO3 and CO2 in cement-based solidification/stabilization of heavy metal-bearing sediment,” Journal of Hazardous Materials, vol. 166, 2009, pp 421-427.

【14】Malviya, R., and Chaudhary, R., “Factors affecting hazardous waste solidification/stabilization: A review,” Journal of Hazardous Materials, vol.137, 2006, pp 267-276.

【15】Leonard, S. A., and Stegemann, J. A., “Stabilization/solidification of petroleumdrill cuttings: Leaching studies,” Journal of Hazardous Materials, vol. 174, 2010, pp 484-491.

【16】林正芳、李公哲,廢棄物固化處理固化體溶出物之預測模式-重金屬污泥固化處理後固化體溶出重金屬之預測模式,行政院環境保護署委託,國立台灣大學環境工程學研究所執行,2002。

【17】美國環保署網站,2012,http://www.epa.gov/。

【18】施兆恭,固化法與活性碳吸附劑對飛灰中重金屬與戴奧辛之溶出影響,碩士論文,國立高雄第一科技大學環境與安全衛生工程系,高雄,2005。

【19】章裕民,廢棄物處理與資源化,臺北:新文京出版社,2011。

【20】張竣淵,應用固化法配合活性碳添加抑制多重污染土壤溶出之研究,碩士論文,國立高雄第一科技大學環境與安全衛生工程系,高雄,2007。

【21】張乃斌,固體廢棄物處理,臺北:三民出版社,2001。

【22】經濟部工業局,重金屬土壤及地下水污染預防與整治技術手冊,臺北:經濟部工業局,2006。

【23】顏佳慧,汞污染場址整治復育與監督管理之實證研究,碩士論文,國立臺北科技大學環境規劃與管理研究所,臺北,2003。

【24】顏晟容,臺灣地區汞之物質流分析及其衝擊評估,碩士論文,國立臺北科技大學環境規劃與管理研究所,臺北,2011。

【25】環境保護署,2012,行政院環境保護署土污基管會網站,
http://sgw.epa.gov.tw/public/index.asp。

【26】環境保護署,2012,環保法規查詢系統,http://w3.epa.gov.tw/epalaw/。

【27】環保署環境檢驗所,2008,土壤酸鹼值(pH值)測定方法-電極法,NIEA S410.62C。

【28】環保署環境檢驗所,2002,土壤水分含量測定方法-重量法,NIEA S280.61C。

【29】環保署環境檢驗所,2011,土壤中陽離子交換容量-醋酸銨法,NIEA S201.61C。

【30】環保署環境檢驗所,2008,土壤及廢棄物中總汞檢測方法-冷蒸氣原子吸收光譜法,NIEA M317.02C。

【31】環保署環境檢驗所,2006,事業廢棄物萃出液中總汞檢測方法-冷蒸氣原子吸收光譜法,NIEA R314.12C。

【32】環保署環境檢驗所,2005,事業廢棄物之固化物單軸抗壓強度檢測方法-單軸抗壓強度小於100 Kgf/cm2之固化物,NIEA R207.22C。
論文全文使用權限:不同意授權