現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:玻璃纖維強化高分子複合材料I型梁-版系統力學行為之研究 [以論文名稱查詢館藏系統]
論文英文名稱:A Study on the Structural Test and Mechanical Behavior of the GFRP I Beam Superstructure [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:100
出版年度:101
中文姓名:陳彥鈞
英文姓名:Yen-Chun Chen
研究生學號:99428012
學位類別:碩士
語文別:中文
口試日期:2012-07-10
論文頁數:89
指導教授中文名:李有豐
口試委員中文名:邱佑宗;陳清泉;鄧文廣;徐增興
中文關鍵詞:FRP玻璃纖維梁-版系統三點抗彎試驗FRP梁續接
英文關鍵詞:FRPGFRPI girderBeam-Deck SystemSmall-scale suprastructures,Girder to girder connectionsTree-point bending test
論文中文摘要:本論文利用玻璃纖維強化高分子(Glass Fiber Reinforced Plastic, GFRP)複合材料質量輕、耐腐蝕、高比強度之特點,克服現有橋梁耐久性與工期等問題。惟因GFRP材料剛性低,使得橋梁之撓度過大,故考量使用以I型梁所組成之梁-版結構系統以提升整體結構勁度。I型斷面除了容易組裝施工外,更可於梁-版系統結構中,利用端隔梁提供I型梁足夠的側向支撐,克服側向扭轉挫屈的問題。本論文之研究方式主要是對梁-版系統以三點抗彎試驗進行測試,試體尺寸為實際橋梁之縮尺,亦進行較大縮尺之試體進行試驗,探討其尺寸效應之影響。此外,考量到橋梁跨徑較長時,需要續接之情況,亦會進行接合處之續接試驗,探討接合處之行為。最後以有限元素和理論進行分析,並與試驗結果進行驗證比較,並提出FRP橋梁之分析方式。本研究可應用於災區及擴寬橋梁路幅,亦可縮短橋梁興建之時間,改善傳統式橋梁需耗費大量人力及施工時間長等缺點,並提升使用年限。
論文英文摘要:In Taiwan, the life cycle of the bridges can be substantially reduced by local environmental factors, such as monsoons and the impact of high humidity and high chloride conditions. A solution was necessary to solve the problems of reducing maintenance costs and widening existing bridges, or even providing bridges for emergency disaster relief. This research examines the characteristics of the Glass Fiber Reinforced Plastic (GFRP) composite materials which are light weight, not subject to corrosion, and have a high tensile strength-to-weight ratio. This product has been utilized in the production of a small-scale model GFRP bridge superstructure (girder-deck) system, then analysed using finite-element method and structural analysis program. The small-scale superstructure systems was performed by three-point bending test. The force-displacement relationships and their corresponding failure modes of the GFRP superstructure will be recorded and discussed. In the meantime, the numerical analysis results by using finite-element method will compare with the experimental results. The different types of the girder to girder connections were proposed in this research. The small-scale girder to girder connections will be performed by three-point bending test also. The research results can be applied to those FRP bridges in disaster areas and also be used to widen the existing bridges.
論文目次:中文摘要 i
英文摘要 ii
誌 謝 iii
目 錄 iv
表目錄 vii
圖目錄 ix
第一章 緒論 1
1.1研究動機 1
1.2研究目的 3
1.3研究方法與流程 3
1.4名詞解釋 5
第二章 文獻回顧 7
2.1 FRP梁構件相關研究 7
2.2 FRP版構件相關研究 10
2.3 FRP 梁-版系統相關研究 12
2.4 FRP橋梁案例 16
第三章 材料介紹與實驗規劃 19
3.1 FRP複合材料介紹 19
3.1.1材料組成 19
3.1.3 FRP材料用於土木工程之優勢 23
3.1.4製造方法 24
3.2試驗方式與設備 26
3.3 FRP構件測試與選擇 27
3.3.1 FRP構件測試結果 29
3.3.2構件選擇與側向扭轉挫屈 31
3.4 FRP梁-版系統結構配置與實驗規劃 34
3.5 FRP梁-版系統製作組裝 36
第四章 實驗觀察與結果比較 45
4.1 縮尺GFRP梁-版系統試驗結果 45
4.1.1 結構系統W4×2-T 46
4.1.2 結構系統W4×2-P 49
4.1.3 結構系統W4×2-P2 51
4.1.4 結構系統W4×2-TP 53
4.1.5 結構系統W4×2-TP2 54
4.1.6 試驗結果比較與小結 56
4.2 縮尺GFRP梁-版系統續接試驗 59
4.3 放大縮尺GFRP梁-版系統續接試驗 65
第五章 實驗結果分析 71
5.1 理論解析與有限元素法之參數與設定 71
5.2構件試驗結果和解析與數值解比較 75
5.3梁-版系統試驗結果和解析與數值解比較 77
第六章 結論與建議 83
6.1結論 83
6.2建議 85
參考文獻 87
論文參考文獻:[1] Ascione, L., Giordano, A. and Spadea, S. (2011) . “Lateral buckling of pultruded FRP beams.” Composites Part B, No.42, pp. 819-824
[2] Bank, L. (2006)“Composites for Construction - Structural Design with FRP Materials,” John Wiley & Sons, Inc., Chapters 12-15
[3] Clarke, JL. (1996) “Structural Design of Polymer Composites : EUROCOMP Design Code and Handbook,” E & FN Spon
[4] Davalos, J. F., Chen, A. and Zou, B. (2012) “Performance of a scaled FRP deck-on-steel girder bridge model with partial degree of composite action.” Engineering Structures, No 40, pp. 51-63
[5] Davalos, J. F., Salim, H. A., Qiao, P. and Lopez-Anido, R. (1996). “Analysis and design of pultruded FRP shapes under bending.” Composites Part B, No. 27 , pp.295-305
[6] Fiberline. (2003) “Fiberline Design Manual,” www.fiberline.dk
[7] Hai, N. D., Mutsuyoshi, H. and Asamoto, S. (2010) . “Structural behavior of hybrid FRP composite I-beam.” Construction and Building Materials, No 24, pp. 956-969
[8] Imperiale, V. A., Cosentino, E., Weaver, P. M. and Bond, I.P. (2010) “Compound joint: A novel design principle to improve strain allowables of FRP composite stringer run-outs.” Composites Part A, No. 41,pp. 521–531
[9] Keller, T. and Gürtler, H.(2006) “Design of hybrid bridge girders with adhesively bonded and compositely acting FRP deck.” Composite Structures, No. 74,pp. 202–212
[10] Kim, H. Y., Hwang, Y. K., Park, K. T., Lee, Y.H. and Kim, S. M. (2005) “Fiber reinforced plastic deck profile for I-girder bridges.” Composite Structures, Vol. 67, pp. 411-416
[11] Kim, H. Y., Lee, Y. H. and Lee, S.Y. (2011) “Ultimate strength of a GFRP deck panel for temporary structures.” Construction and Building Materials, No 93, pp. 528-537
[12] Mendes, P. J. D., Barros , J. A. O., Sena-Cruz, J. M. and Taheri, M. (2011) “Development of a pedestrian bridge with GFRP profiles and fiber reinforced self-compacting concrete deck.” Composite Structures, Vol. 93, pp. 2969-2982
[13] Minghini, F., Tullini, N. and Laudiero, F. (2008). “Buckling analysis of FRP pultruded frames using locking-free finite elements.” Thin-Walled Structures, No. 46 , pp. 223-241.
[14] Neto, A. B. D. S. S. and Rovere, H. L. L. (2007). “Flexural Stiffness Characterization of Fiber Reinforced Plastic (FRP) Pultruded Beams.” Composite Structures, Vol. 81, pp. 274-282.
[15] Neto, A. B. D. S. S., and Rovere, H. L. L. (2010) “Composite concrete/GFRP slabs for footbridge deck systems.” Composite Structures ,Vol. 92, pp. 2554-2564
[16] Park, K. T., Kim, S. H., Lee, Y. H. and Hwang, Y. K. (2006) “Degree of composite action verification of bolted GFRP bridge deck-to-girder connection system.” Composite Structures, No. 72,pp. 393–400
[17] Park, K.T. (2008) “Analytical verification of a composite level of bolted GFRP bridge deck-to-girder connection system.” Composite Structures, Vol. 89, pp. 484-488
[18] Qiao, P., Davalos, J. F. and Brown, B. (2000) “A systematic analysis and design approach for single-span FRP deck/stringer bridges.” Composites: Part B, No. 31 ,pp. 593-609
[19] Strongwell, Fiberglass Building Solutions, www.strongwell.com, 2011
[20] Salim, H. A., Davalos, J. F., Qiao,P.and Kiger, S. A. (1997) “Analysis and design of fiber reinforced plastic bcomposite deck-and-stringer bridges.” Composite Stnrctures Vol. 38, No. 1-4, pp. 295-307,
[21] Schniepp, T. J. (2002). “Design Manual Development for a Hybrid, FRP Double-Web Beam and Characterization of Shear Stiffness in FRP Composite Beams.” MS Thesis, Virginia Polytechnic and State University, USA.
[22] Zhang, Y. and Cai, C. S. (2007) “Load distribution and dynamic response of multi-girder bridges with FRP decks.” Engineering Structures, No 29, pp. 1676-1689
[23] Zhou, A. and Keller, T. (2005) “Joining techniques for fiber reinforced polymer composite bridge deck systems.” Composite Structures, Vol. 69, pp. 336-345
[24] 丁湘蘭,FRP橋面版結構分析與設計之研究,台北:碩士論文,國立臺北科技大學土木與防災技術研究所,2002。
[25] 甘淑婷,混編纖維複合梁構件之三點抗彎實驗及力學行為探討,台北:碩士論文,國立臺北科技大學土木與防災技術研究所,2011。
[26] 余忠政,FRP 構件物理及化學結合剪力強度之研究,台北:碩士論文,國立臺北科技大學土木與防災技術研究所,2012。
[27] 吳嘉濠,FRP橋面版構件於三點抗彎測試與有限元素分析之研究,台北:碩士論文,國立臺北科技大學土木與防災技術研究所,2012。
[28] 陳生金,鋼結構設計-極限設計法與容許應力設計法,台北:科技圖書股份有限公司,2001。
[29] 游錫揚,纖維複合材料,台中:國彰出版社,1997。
[30] 黃耀賢,FRP橋面版試驗與模擬分析,新竹:碩士論文,中華大學土木工程學系碩士班,2002。
[31] 謝富池,纖維強化高分子複合材料組合式構件力學實驗及行為探討,台北:碩士論文,國立臺北科技大學土木與防災技術研究所,2012。
論文全文使用權限:不同意授權