現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:應用地化模式模擬蘭陽平原含砷地下水之傳輸與宿命 [以論文名稱查詢館藏系統]
論文英文名稱:Geochemical simulation on the fate and transport of groundwater arsenic in Lanyang Plain [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:100
出版年度:101
中文姓名:楊宗穎
英文姓名:Tzung-Ying Yang
研究生學號:99428076
學位類別:碩士
語文別:中文
口試日期:2012-07-08
論文頁數:74
指導教授中文名:劉振宇;陳世楷
口試委員中文名:張誠信;王聖瑋;高雨瑄
中文關鍵詞:蘭陽平原HYDROGEOCHEM地下水
英文關鍵詞:ArsenicLanyang plainHYDROGEOCHEMGroundwater
論文中文摘要:地下水為蘭陽平原重要的水資源之一。本研究主要目的係探討蘭陽平原含砷地下水之傳輸宿命。先應用地下水流動模式MODFLOW建立蘭陽平原地下水流流場,並以地下水觀測井水位資料加以驗證,另以PHREEQC地化模式決定地下水平衡狀態下主要物種生成與飽和指數。再應用HYDROGEOCHEM地化傳輸模式模擬三種情境地下水中砷等物種的傳輸歷程,包括改變抽水量、垃圾掩埋場滲漏及蘭陽溪沿岸生雞糞的大量施用。研究結果顯示,三種情境模擬結果均顯示砷濃度變化明顯,自扇頂至扇尾隨模擬時間的增加而增加,由於扇尾地下水趨於還原環境,導致該區砷濃度明顯上升。此外,在礁溪溫泉使用量大增之情況下,會造成該區之地下水位大幅下降。而在垃圾掩埋場持續滲漏之情況下可明顯看出砷汙染團之形成,並往外擴延。蘭陽溪沿岸長期施用生雞糞亦會造成地下水之嚴重砷汙染。建議應於扇頂及蘭陽溪沿岸增設觀測井加強監測,而政府相關單位亦應擬定適當的管理措施以保育此地區之地下水資源。
論文英文摘要:Groundwater is one of the most important water resources in Lanyang plain. The objectives of this study are to evaluate the fate and transport of arsenic (As) in groundwater of the Lanyang plain. The lithological profiles and hydraulic parameters were collected from Central Geological Survey and Water Resources Agency of Taiwan to establish the conceptual hydrogeological settings. The groundwater flow model MODFLOW was first applied to establish the groundwater flow field which was calibrated by using the groundwater level data. The geochemical equilibrium model PHREEQC was adopted to determine the major species and saturation index by using water quality data from monitoring well. The 3-dimensional hydrogeochemical transport model HYDROGEOCHEM was then applied to assess the anthropogenic influences on the fate and transport of As under various scenarios including different pumping rate, landfill leakage, and the application of poultry litter along the Lanyang river. All simulated results show that under these scenarios the concentrations of arsenic increases with the simulation time from the proximal-fan to the distal-fan, and the most significantly change was found in the distal-fan due to the more reducing environment. High As concentration of observed in the distal-fan area. Additionally, as the groundwater pumping amount increased 1.5 times, the groundwater level was significantly decreased in Chiao-Shi area. The results also showed that the continuous leakage of the landfill resulted an extensively developed As plume outside the landfill. And the long-term application of poultry litter along the Lanyang river also cause the severe As pollution of the groundwater. It is suggested that the setup of observation wells in proximal-fan and along the Lanyang river can effectively monitor groundwater quality. Moreover, the relevant governmental agencies should formulate effective measures to conserve the groundwater resources in Lanyang plain.
論文目次:目錄

中文摘要 I
英文摘要 II
誌 謝 IV
目 錄 V
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1-1 前言 1
1-2 研究目的 2
1-3 論文架構 2
第二章 文獻回顧 4
2-1 砷之特性與分布 4
2-1-1 砷之基本化學特性 4
2-1-2 砷之全球分布 4
2-2 砷於地質環境中之釋出機制 5
2-3 蘭陽平原地下水中砷之汙染分布 7
2-4 水文及地質特性 8
2-5 地化傳輸模式之發展與應用 11
2-6 國內外砷之傳輸模擬 12
第三章 研究方法 13
3-1 研究區域 13
3-2 地化模式-PHREEQC 15
3-2-1 模式介紹 15
3-2-2 模式理論 15
3-3 地化傳輸模式-HYDROGEOCHEM 5.0 18
3-3-1 模式介紹 18
3-3-2 模式理論 18
3-4 MODFLOW模式理論介紹 29
3-5 模式建置 31
第四章 結果與討論 37
4-1 模式之水流率定 37
4-2 模擬案例結果 39
4-2-1 情境模擬1-改變抽水量 40
4-2-2 情境模擬2-垃圾掩埋場滲漏 41
4-2-3 情境模擬3-蘭陽溪沿岸生雞糞大量施用 42
4-3 綜合討論 44
第五章 結論與建議 68
5-1 結論 68
5-2 建議 69
參考文獻 70
論文參考文獻:參考文獻

[1]. Ahmed, K.M., Bhattacharya, P., Hasan, M.A., Akhter, S.H., Alam, S.M.M., Bhuyian, M.A.H., Iman, M.B., Khan, A.A., and Sracek, O., 2004. Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: an overview. Applied Geochemistry 19, 181-200.
[2]. Ayotte, J.D., Montgomery, D.L., Flanagan, S.M. and Robinson, K.W., 2003. Arsenic in groundwater in Eastern New England: occurrence, controls, and human health implications. Environmental Science and Technology 37, 2075-2083.
[3]. Berg, M., Stengel, C. and Trang, P.T.K., 2007. Magnitude of arsenic pollution in the Mekong and Red river deltas Cambodia and Vietnam. The Science of the Total Environment 372, 413-425.
[4]. Bergur, S., Sigurdur, R.G., and Andrew, A.M., 2011. A field and reactive transport model study of arsenic in a basaltic rock aquifer, Applied Geochemistry 26, 553-564.
[5]. Chen, C.L., 1987. Numerical Modeling of Dissimilatory Iron Reduction in Sediments at a Field Site, Master thesis, National Yunlin University of Science & Technology.
[6]. Demesmay, C., Olle, M. and Porthault, M., 1994. Arsenic speciation by coupling high-performance liquid chromatography with inductively coupled plasma mass spectrometry. Fresenius Journal of Analytical Chemistry 348, 205-210.
[7]. Drahota P., Filippi M., Ettler V., Rohovec J., Mihaljevič M., and Šebek O., 2012. Natural attenuation of arsenic in soils near a highly contaminated historical mine waste dump, Science of the Total Environment 414, 546-555.
[8]. Erica, R.S., Alexis, K. Navarre-Sitchler, Reed, M.M., John, E.M., 2012. A quantitative methodology to assess the risks to human health from CO2 leakage into groundwater, Advances in Water Resources 36, 146-164.
[9]. Ferreccio, C., Gonzalez, C., Milosavjlevic, V., Marshall, G., Sancha, A.M. and Smith, A.H., 2000. Lung cancer and arsenic concentrations in drinking water in Chile. Epidemiology 14, 593-602.
[10]. Itala, A.,2009. Chemical Evolution of Bentonite Buffer in a Final Repository of Spent Nuclear Fuel during the Thermal Phase, VTT Technical Research Centre of Finland, Finland.
[11]. Galindez, J.M., Molinero, J., 2010. On the relevance of electrochemical diffusion for the modeling of degradation of cementitious materials, Cement and Concrete Composites, volume 32, 351-359.
[12]. Gautham, P.J., T.P. Clement, M.O. Barnett, K.K. Lee, 2012. A modified batch reactor system to study equilibrium-reactive transport problems, Journal of Contaminant Hydrology 129-130, 2-9.
[13]. Gu C., and William J.R., 2010. Combined effects of short term rainfall patterns and soil texture on soil nitrogen cycling-A modeling analysis, Journal of Contaminant Hydrology 112, 141-154.
[14]. Kalia, K. and Flora, S.J., 2005. Strategies for safe and effective therapeutic measures for chronic arsenic and lead poisoning. Journal of Occupational Health 47, 1-21.
[15]. Legeleux, F., Reyss, J.L., Bonte, P., Orgando, C., 1994. Concomitant enrichments of uranium, molybdenum and arsenic in suboxic continental margin sediments Oceanologica Acta Vol.17, no.4, 417-430.
[16]. Liu, C.W., Lin, W.S., Chou, Yen.L., Lin, Y.J., 2010. Evaluation of Different Activity Coefficient Models in Computing the Correct Concentrations of Radioactive Aqueous Species, EAform, South Korea.
[17]. Mandal, B.K. and Suzuki, K.T., 2002. Arsenic round the world: a review. Talanta 58, 201-235.
[18]. Nickson, R.T., McArthur, J.M., Burgess, W.G., Ahmed, K.M., Ravenscroft, P. and Rahman, M., 1998. Arsenic poisoning of Bangladesh groundwater. Nature 395, 338.
[19]. Park, J.M., Lee, J.S. and Lee, J.U., 2006. Microbial effects on geochemical behavior of arsenic in As-contaminated sediments. Journal of Geochemical Exploration 88, 134-138.
[20]. Peters, S.C., Blum, J.D., Klaue, B. and Karagas, M.R., 1999. Arsenic occurrence in New Hampshire drinking water. Environmental Science and Technology 33, 1328-1333.
[21]. Rasmussen, L. and Anderson, K., 2002. Environmental health and human exposure assessment. United Nations Synthesis Report on Arsenic in Drinking Water. WHO, Chapter 2.
[22]. Redman, A.D., Macalady, D.L. and Ahman, D.A., 2001. Preliminary study of various factors influencing arsenic mobility in porous media. USGS Workshop on Arsenic in the Environment, Denver: Feb, 21-22.
[23]. Raessler, M., Michalke, B., Schulte-Hostede, S. and Kettrup, A., 2000. Long-term monitoring of arsenic and selenium species in contaminated groundwaters by HPLC and HG-AAS. The Science of the Total Environment 258, 171-181.
[24]. Smedley, P.L. and Kinniburgh, D.G., 2002. A review of the source, behavior and distribution of arsenic in natural waters. Applied Geochemistry 17, 517-568.
[25]. Smith, A., Goycolea, M., Haque, R. and Ciggs, M.L., 1998. Marked increase in bladder and lung cancer mortality in a region of northern Chile due to arsenic in drinking water. American Journal of Epidemiology 147, 660-669.
[26]. Stumm, W. and Morgan, J.J., 1996. Aquatic Chemistry: chemical equilibria and rates in natural waters, 3rd edition, John Wiley and Sons, New York.
[27]. Wang, S.W., C. W. Liu, K. L. Lu, Y. P. Chang, T. W. Chang, 2011, Distribution of inorganic As species in groundwater samples with the presence of Fe, Water Quality, Exposure and Health. 2: 181-192.
[28]. Yeh, G.T., Li, Y., Jardine, P., Burgos, W.D., Fang, Y., Li M.H., and Siegel, M.D., 2004. HYDROGEOCHEM 5.0: A Three-Dimensional Model of Coupled Fluid Flow, Thermal Transport, and HYDROGEOCHEMical Transport through Variably Saturated Conditions: Version 5.0, Oak Ridge National Laboratory, Oak Ridge, TN.
[29]. Zhang H., and Selim H.M., 2011. Second-order modeling of arsenite transport in soils, Journal of Contaminant Hydrology 126, 121-129.
[30]. 江新春,1976,宜蘭平原之震測,礦業技術,第14卷,第6期,215-221。
[31]. 江漢全、蕭雪霞、林智賢,2001,蘭陽平原供飲用地下水之含砷量調查分析,中華民國環境保護學會會誌,24卷,1期,82-94。
[32]. 江漢聲、鄭天浚、呂鋒洲、洪清霖、郭宗禮、陳逸忠,1989,宜蘭地區由統計分析深水井含砷及毒性之研究,經濟部中央地質調查所,水文地質研討會論文專集,165-175。
[33]. 李金靖,2008,蘭陽平原地下水砷之地化特徵及健康風險評估,國立台灣大學生物環境系統工程研究所博士論文,台北,台灣。
[34]. 林文勝,1995,模擬放射性核種於混凝土障壁之反應化學傳輸,國立台灣大學農業工程研究所碩士論文。
[35]. 林宜長,1986,宜蘭地區井水砷含量及螢光強度與居民之烏腳病發生及癌症死亡率之相關研究,烏腳病研究報告,台灣省政府烏腳病防治中心,第27輯,115。
[36]. 林清傑,2009,砷累積於水稻生長在含洛克沙砷之土壤,國立台灣大學生物環境系統工程研究所博士論文,台北,台灣。
[37]. 吳明哲,2008,蘭陽平原地下水及地層中砷之分布與特徵:意函砷之釋出過程,國立台灣大學生物環境系統工程研究所碩士論文,台北,台灣。
[38]. 周彥呂,2008,臺北盆地地下水利用可行性之分析評估及管理,國立台灣大學生物環境系統工程研究所碩士論文,台北,台灣。
[39]. 徐鐵良,1989,台灣之地質與地下水,經濟部中央地質調查所水文地質研討會論文專輯,1~12。
[40]. 陳文山,2000,宜蘭平原沉積環境分析及地層對比研究,經濟部地質調查所研究計畫報告。
[41]. 陳英傑,2001,宜蘭平原中興、五結和龍德岩心孔隙水及沉積物地球化學特性之研究,國立台灣大學地質科學研究所碩士論文。
[42]. 馮孝芬,1986,(一)蘭陽地區井水砷含量及螢光強度與居民死亡率之相關研究(二)蘭陽地區井水硬度與居民死亡率之相關研究,國立台灣大學公共衛生研究所碩士論文,台北,台灣。
[43]. 彭宗仁,1995,宜蘭地區天水和地下水中穩定碳、氫、氧及放射性碳、氚之環境同位素研究,國立台灣大學地質學研究所博士論文。
[44]. 羅美棧,1982,蘭陽地區地下水含砷量調查報告,烏腳病之研究報告,台灣省烏腳病防治中心,14,1-16。
[45]. 財團法人農業工程研究中心,96年度台灣地區地下水質檢測分析與評估,經濟部水利署,2007。
[46]. 經濟部水資源統一規劃委員會,1978,宜蘭地區地下水調查報告,41,地下水-01,共30頁。
[47]. 經濟部水利署,2002,地下水資源整體營運規劃與綜合評估。
[48]. 經濟部水利署,2003a,台灣地區地下水整體觀測井網計畫第二期。
[49]. 經濟部水利署,2003b,台灣地下水資源圖說明書。
[50]. 經濟部水利署,2005,台灣地區地下水資源。
[51]. 經濟部水利署,2007,蘭陽地區地面地下水聯合運用規劃。
論文全文使用權限:同意授權於2022-12-31起公開