現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:猴山岳步道崩塌地的地形地貌記錄與分析 [以論文名稱查詢館藏系統]
論文英文名稱:The documentation and analysis of the landform topography of Houshanyue landslide [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:100
出版年度:101
中文姓名:陳泓錡
英文姓名:Hung-Chi Chen
研究生學號:99428072
學位類別:碩士
語文別:中文
口試日期:2012-07-10
論文頁數:97
指導教授中文名:陳偉堯
口試委員中文名:蔡富安;張國楨;朱子偉
中文關鍵詞:山崩猴山岳立體影像點雲地面雷射掃描儀
英文關鍵詞:landslideHoushanyue3D imagepoint cloudTerrestrial laser scanner
論文中文摘要:台灣處於極端氣候的形態,時常有集中降雨造成邊坡不穩定,以至於山崩及土石流災情頻傳。本研究針對台北市文山區貓空指南宮站附近邊坡崩塌處進行長期多次觀測。因為民國97年的連續颱風豪雨所造成大規模的崩塌,崩塌範圍地勢起伏大,有些崩塌處不易進入,藉由攝影及掃描技術在崩塌現地進行大規模作業,以便建立三維立體影像及三維空間模型,以研究現地的地形演進和侵蝕過程。
因此本研究利用紅藍色差呈現立體影像及地面雷射掃描儀建立真實逼真的三維空間模型;建立立體影像主要是使用兩台相機從不同的角度來重建現場的三維場景,可使從未到過現場的人感受現地環境,為台灣首度針對邊坡災害拍攝超高解析度照片及製成3D立體影像,此外,本研究並利用一般影像、超高解析及3D立體影像,進行問卷調查,並完成統計分析。由統計結果顯示,3D立體影像和超高解析影像之間優劣並不明顯,依據研究對象需求不同,而有不同。
地面雷射掃描儀具有快速獲取完整高精度及高密度的空間資訊資料的能力,掃描資料以逼真的三維點雲模型方式呈現,可用於虛擬導覽及邊坡地形演進之評估,初步結果顯示中邊坡表面有微量的變化,但趨於穩定;本文利用攝影及掃描兩種技術,在不破壞原地形的情形下記錄崩塌地所有可視範圍(包括無法進入的區域),兩種技術分析結果皆可相互比對驗證。
論文英文摘要:Taiwan is under the influence of extreme weather conditions where intense rainfall often occurs and creates unstable slopes. Therefore, landslides and mudslides happen frequently. This study is consisted of repeated observations at the landslide site near the Zhinan Temple Station of Maokong Gondola in Taipei. The landslide occurred in 2008 due to heavy rains brought by successive typhoons. The hilly topography at the site made many locations inaccessible to researchers. Hence, the analysis of topographic evolution and erosion process can only be conducted through photography and laser scanning of the site.
This study used the principle of chromatic difference between red and blue to create 3D images, and the terrestrial laser scanning to establish 3D spatial models. Two images taken at different angles were used to create 3D scenes, which allowed a person who had never been to the site to see the site in 3D. This was the first time that a slope disaster was photographed using high resolution images and made into 3D. Furthermore, normal, high resolution, and 3D images were used in a survey to compare the relative effectiveness of the images. Statistical results showed that 3D and high resolution images were not significantly different in effectiveness. They could be used according to research needs.
Terrestrial laser scanner has the ability to rapidly generate spatial data with high resolution and high accuracy. The data obtained are called 3D point clouds and can be used to create virtual video tour of the site. The scanning results showed little change of the surface of the medium slope, and the slope appeared to have been stabilized. In conclusion, this study adopted two technologies, photography and laser scanning, to record all visible terrain of the landslide including those areas which were not accessible. Results from both technologies can be used to contrast and evaluate each other.
論文目次:中文摘要 i
英文摘要 iii
誌 謝 v
目錄 vii
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 研究動機與目的 1
1.2 猴山岳研究區域概述 2
1.3 研究架構與方法 2
第二章 文獻回顧 4
2.1 三維雷射掃描技術應用滑坡相關研究 4
2.2 滑坡相關研究 4
第三章 使用LiDAR記錄與分析猴山岳崩塌地 12
3.1 地面雷射掃描儀介紹 12
3.1.1 地面雷射掃描儀測距及掃描原理 12
3.1.2 地面雷射掃描儀RIGEL VZ-400 14
3.1.3 RiScan 軟體介紹 17
3.1.4 點雲資料精度評估 18
3.2 點雲資料記錄與分析 26
3.2.1 現地掃描配置 26
3.2.2 現地掃描成果及路線瀏覽 27
3.2.3 中邊坡地形演進探討 34
3.2.3.1 各時期掃描資料合併 34
3.2.3.2建立中邊坡模型及比較結果 42
3.2.3.3剖面線比較結果 49
第四章 猴山岳崩塌地3D超高解析立體影像觀測 55
4.1 Gigapan 儀器介紹 55
4.2 利用超高解析影像拍攝猴山岳崩塌地 56
4.2.1 超高解析照片 56
4.2.2 拍攝成果說明 58
4.3 建立3D紅藍立體影像 64
4.3.1 建立3D紅藍立體影像方法 64
4.3.2成果展示及3D立體影像應用 66
第五章 3D超高解析影像應用及問卷調查分析 71
5.1 問卷設計 71
5.2 問卷題目 76
5.3 調查結果統計 78
5.4 問卷討論 89
第六章 結論與建議 91
6.1 結論 91
6.2 建議 93
參考文獻 94
論文參考文獻:[1]Arayici, Y. (2007). “An Approach for Real World Data Modeling with the 3D Terrestrial Laser Scanner for Built Environment,” Automation in Construction, 16, pp. 816-829.
[2]Abmayr, T., Hartl, F., Reinkoster, M., and Frohlich, C. (2005). “Terrestrial Laser Scanning--Applications in Cultural Heritage Conservation and Civil Engineering,” Proceedings of the ISPRS Working Group V/4 Workshop, 3D-ARCH 2005, Mestre-Venice, Italy, August 22-24.
[3]Ballerini, G., Bracci, S., Pantani, L., Tirelli, D., and Tiano, P. (1999). “LiDAR Remote Sensing of Stony Cultural Heritage: Detection of Protective Treatments,” Proceedings of SPIE, 3868, pp. 332-338.
[4]Baldo, M., Bicocchi, C., Chiocchini, U., Giordan, D. and Lollino, G. (2009). “LIDAR monitoring of mass wasting processes: The Radicofani landslide, Province of Siena, Central Italy,” Geomorphology, 105, pp.193–201.
[5]Bitelli, G., Dubbini, M. and Zanutta, A.(2004). “Terrestrial laser scanning and digital photogrammetry techniques to monitor landslide bodies,” In Proceedings of the XXth ISPRS Congress, Istambul: 6.
[6]Boehler, W., Heinz G. and Marbs A. (2001). “The potential of non-contact close range laser scanners for cultural heritage recording,” Proceedings of CIPA International Symposium, Potsdam, Germany, 2001.
[7]Buchheim, J. (2010). “3-D stereo gigapans, shooting and preparing for viewing 3-D panaromas”, http://gigapan.org/gigapans/64651.
[8]Chen, W. W., Chang, C.-H., Chung, M.-K., Huang, P.-S., Chung, W.-T., Chung, Y.-L., and Chen, Y.-W. (2010). “Landslide Site Reconstruction with Terrestrial Laser Scanning,” the 18th International Conference on Geoinformatics (Geoinformatics 2010), Beijing, China, June 18-20.
[9]Chen, W. W. and Chen, P. (2010). "Reconstructing Tree Trunks from Point Clouds using PSO," 2010 International Conference on Intelligent Computation Technology and Automation (ICICTA 2010), Changsha, China, May 11-12, 2010.
[10]Chen, W. W. and Chen, P. (2011). “PSOslope: a stand-alone Windows application for graphical analysis of slope stability,” Proc. 2nd International Conf. on Swarm Intelligence (Chongqing, China), June, 2011, Springer Lecture Notes in Computer Science, vol. 6728 LNCS, issue PART 1, pp. 56-63.
[11]Chen, H.-C., Chen, W. W., and Chang, C.-H. (2011). "Novel in-situ method for fast determination of bridge pier displacements during push-over tests," To appear in the Proceedings of the International Symposium on LIDAR and Radar Mapping: Technologies and Applications (LIDAR & RADAR 2011), Nanjing, China, May 26-29, 2011.
[12]Du, J.-C. and Teng, H.-C. (2007). “3D laser scanning and GPS technology for landslide earthwork volume estimation,” Automation in Construction 16, pp. 657–663
[13]Dunning, S. A., Massey, C. I., and Rosser, N. J. (2009). “Structural and Geomorphological Features of Landsides in the Bhutan Himalaya Derived from Terrestrial Laser Scanning,” Geomorphology, 103, pp. 17-29.
[14]Hsiao, K. H., Liu, J. K., Yu, M. F. and Tseng Y. H. (2004). “Change detection of landslide terrains using ground-based LiDAR data,” XXth ISPRS Congress, Istanbul, Turkey, Commission VII, WG VII/5.
[15]Wen, J.-C. and Chen, W. W. (2011). “Finding most likely sliding surfaces using PSO,” Proc. 2011 Conf. on Technologies and Applications of Artificial Intelligence, Workshop on Theory and Applications of Evolutionary Algorithms (Chung-Li, Taiwan), November, 2011, IEEE Computer Society, Conf. Publishing Services, pp. 309-312.
[16]Kasperski, J., Delacourt, C., Allemand, P., Potherat, P., Jaud, M. and Varrel, E. (2010). “Application of a Terrestrial Laser Scanner (TLS) to the Study of the Sechilienne Landslide (Isere, France),” Remote Sens. 2010, Vol. 2, pp. 2785-2802.
[17]Lim, M., Petley, D. N., Rosser, N. J., Allison, R. J., Long, A. J., and Pybus, D. (2005). “Combined Digital Photogrammetry and Time-of-flight Laser Scanning for Monitoring Cliff Evolution,” The Photogrammetric Record, 20(110), pp. 109-129.
[18]Lingua, A., Piatti, D. and Rinaudo, F. (2008). “Remote monitoring of a landslide using an integration of GB-INSAR and lidad techniques,” The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII, Part B1, Beijing 2008.
[19]Pieraccini, M., Noferini, L., Mecatti, D., Atzeni, C., Teza, G., Galgaro, A., and Zaltron, N. (2006). “Integration of Radar Interferometry and Laser Scanning for Remote Monitoring of an Urban Site Built on a Sliding Slope,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 9, pp. 2335-2342.
[20]Prokop, A. and Panholzer, H. (2009). “Assessing the capability of terrestrial laser scanning for monitoring slow moving landslides,” Nat. Hazards Earth Syst. Sci., 9, pp. 1921–1928.
[21]Sui, L., Wang, X., Zhao, D. and Qu, J. (2008).” Application of 3D laser scanner for monitoring of landslide hazards,” The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII, Part B1, Beijing 2008.
[22]Teza, G., Galgaro, A., and Moro, F. (2009). “Contactless Recognition of Concrete Surface Damage from Laser Scanning and Curvature Computation,” NDT&E International, 42, pp. 240-249.
[23]林煒涎(2007),「3D雷射掃描儀應用於戶地測量之研究」,國立成功大學地球科學研究所碩士論文。
[24]吳宗江、馮正一、陳文福(2007),「崩塌地地形量測精度對土方估算影響之研究」,水土保持學報,第三十九卷,第一期,第63-72頁。
[25]許智凱,林毅立,陳泓錡,陳偉堯,王維周(2011),「應用雷射掃描技術保存景美人權文化園區的文化遺產」,水土保持學報(投稿中)。
[26]陳泓錡,陳偉堯,張哲豪(2011),「LiDAR三維掃描測量橋柱位移的實例探討」,牛鬥橋現地實驗研討會,100年4月27日,國家地震工程研究中心。
[27]閻亞寧,王伯群,陳昶良,陳敏彬,游政憲,鄭鴻銘,楊文斌,練雅婷(2008),「台北縣古蹟建築數位典藏計畫」,行政院國家科學委員會補助專題研究計畫,NSC 96-2422-H-163-001。
[28]鍾雅蘭(2010),猴山岳邊坡樹木生長方向的統計分析,碩士論文,台北科技大學土木與防災研究所。
[29]蕭牟淵,游本志,王泰典,蕭興臺(2010),「台灣公路隧道安全檢測及評估之研究」,台灣公路工程,第36卷,第5期,第25-44頁。
[30]蕭國鑫,劉進金,游明芳,曾義星(2005),「航測與三維雷射掃描資料應用於九份二山地形變化分析」,航測及遙測學刊,第十卷,第二期,第191-202頁。
[31]Riegl Laser Measurement Systems︰http://www.riegl.com/
論文全文使用權限:同意授權於2017-08-13起公開