現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:非點源污染監測分析-以集水區水稻田為例 [以論文名稱查詢館藏系統]
論文英文名稱:Monitoring and Analysis of Nonpoint Source Pollution - Case study on paddy fields in a watershed [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:100
出版年度:101
中文姓名:葉峻麟
英文姓名:Chun-Lin Yeh
研究生學號:99428082
學位類別:碩士
語文別:中文
口試日期:2012-07-08
論文頁數:81
指導教授中文名:陳世楷
口試委員中文名:張誠信;高雨瑄;王聖瑋
中文關鍵詞:化學肥料水稻非點源汙染迴歸水
英文關鍵詞:Chemical fertilizersPaddy fieldNitrogenPhosphorusNonpoint source pollutionReturn flow
論文中文摘要:數十年來,化學肥料之使用已帶來許多負面影響,主要來自農耕施肥之氮、磷等營養鹽對水體之污染,集約施肥使氮、磷累積於地下及地面水體。水體遭受污染後產生諸多環境問題,包括藻類大量繁殖及水體之優養化,甚至對人類健康產生潛在性之威脅。而水稻為台灣主要作物,每年期作面積達25萬公頃以上,其施用之化學肥料占農業作物肥料消耗量中極大比例。
為了瞭解集水區上游水田施肥導致之非點源汙染,本研究以新竹縣新埔鎮實驗梯田為研究區域,藉由現地監測實驗田區完整耕作期間之地表、地下水體營養鹽濃度變化,評估分析農業迴歸水水質受施肥影響及其對集水區水環境所造成之汙染潛勢。水質監測結果顯示,水稻田施肥對於地表水體之影響,主要在於歷次施肥初期造成銨氮及硝酸鹽氮較明顯上升,其他時間則維持相對穩定之低濃度,約與灌溉水質相當。水井地下水質監測結果則顯示,銨氮、硝酸鹽氮與總磷濃度有較明顯之變化,與入滲至地下水井之路徑長度有關,水深愈深者,較不易受到田區施肥之影響,其檢測之營養鹽濃度也愈低。田區之氧化還原電位結果顯示,水稻田長期湛水導致土壤表面下1cm深度以下呈現還原狀態。研究結果進一步顯示,田區排水量及肥料管理為水稻田營養鹽污染潛勢之主要控制因子,可據此提出降低水田因施肥對於溼地生態與人體危害之水/肥份管理策略,包括減少基肥時期之排水量或截留天然降雨進行深水灌溉,迴歸水之重複利用以及合理化施肥等。此外,目前廣為世界各國重視或採用之SRI法(The System of Rice Intensification),亦可加以研究應用。本研究成果可提供作為農業非點源汙染控制措施及評估農業迴歸水再利用之參考依據。
論文英文摘要:The use of chemical fertilizer has negatively impacted on environments in recent decades, mainly through water pollution by nitrogen and phosphate originating from agricultural activity. Intensive use of fertilizer for crops is responsible for nitrate and phosphate accumulation in both groundwater and surface waters. Water bodies polluted by nutrients create many environmental problems, including algal blooms and eutrophication in aquifers or in surface water bodies, and may pose potential hazards to human health. As a main crop and with the cultivation area about 0.25 million ha per year in Taiwan, Rice paddies account for a significant share of fertilizer consumption among agriculture crops.
The aim of this study is to evaluate the fertilization of paddy fields impacting on return flow water quality. Water quality monitoring continued for two crop-periods around subject to different water bodies, including the irrigation water, drainage, and shallow groundwater was conducted in the Hsinpu experimental paddy field located at Hsinchu County, north Taiwan. The results indicated that obviously increasing of ammonium-N, nitrate-N and TP concentrations in the surface drainage water were observed during the early stage of fertilizer applications, but reduced to relatively low concentrations in the remaining period of cultivation. Groundwater quality monitoring from three observation wells with difference water levels showed that the observation wells with the more shallow water depth, the more significant variation of concentrations of ammonium-N, nitrate-N and TP could be observed, which means that the major difference between the high and low contamination potential of nutrient of groundwater is related to the length of percolation route in this area. The ORP values of around –200 mV were measured within the 1 to 10 cm depth, indicating that the redox potential of the most part of root zone is dominated by the reduced condition after long-term flooding. The monitoring analysis also showed that the potential pollution load of nutrient could be further reduced by well drainage water control and rational fertilizer management, such as deep-water irrigation, reuse of return flow, the rational application of fertilizers, and the SRI (The System of Rice Intensification) method are recommended. The results of this study can provide as an evaluation basis to formulate effective measures for agricultural non-point pollution control and the reuse of return flow.
論文目次:摘要 i
英文摘要 ii
謝誌 IV
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究目的 2
1.3 研究方法與流程 2
第二章 文獻回顧 4
2.1水田施肥對水環境影響之相關研究 4
2.2水田淨化水質功能相關研究 6
2.3水稻田氧化還原電位 6
2.4迴歸水 7
第三章 研究區域概况與實驗配置 11
3.1 實驗田區介紹 11
3.2水稻栽培管理 16
第四章 研究方法 19
4.1採樣與檢測 19
4.1.1 採樣頻率 19
4.1.2檢測項目 20
4.1.3 採樣方法及檢測方式 22
4.2水收支平衡 24
4.2.1 蒸發散量 25
4.2.2 垂向滲漏量 26
4.3水稻田氧化還原電位量測 26
第五章 結果與討論 28
5.1 水田環境氧化還原電位監測 28
5.2水質分析-灌溉水、逕流水 32
5.2.1一期作 33
5.2.2二期作 38
5.3水質分析-地下水 42
5.3.1氮素 42
5.3.2總磷 46
5.3.3 pH值 47
5.3.4 導電度 49
5.3.5 地下水質綜合分析 50
5.4土壤檢測-總凱氏氮及總磷 51
5.5營養鹽污染潛勢分析 53
5.5.1 水收支 53
5.5.2營養鹽污染潛勢分析 55
5.5.3降低水田營養鹽污染潛勢策略分析 63
第六章 結論與建議 68
6.1 結論 68
6.2 建議 69
參考文獻 70
附錄A. 水質變化統計分析 75
論文參考文獻:[1] 台灣省農田水利聯合會,農田水利會技術人員訓練教材-灌溉管理類合訂本,1994。
[2] 甘俊二、許宗民,水稻耐旱性及節水灌溉對策之調查研究,台灣水利第32 卷第1 期,1984,p4~p37。
[3] 甘俊二,「灌溉系統配水技術之分析與研究」,台灣大學農工系,臺北,1979。
[4] 甘俊二,「台灣傳統水稻一期作淺水栽培之排水口控制水深」,2000。
[5] 田淵俊雄、高村義親、久保田治夫、鈴木誠治,「水田之氮、磷濃度與其流出入」,農業土木學會誌,第47卷,第11期,1979,第23-28頁。
[6] 田淵俊雄,世界的水田、日本的水田,農文協(日文),1999。
[7] 朱榮彬,考慮水稻生理配水方法之研究,台灣水利季刊第38 卷第4 期,1990,p76~p84。
[8] 行政院環境保護署,全國環境水質監測資訊網,2011,(http://wqshow.epa.gov.tw/)。
[9] 行政院經濟部水利署,各項用水統計資料庫,2010,(http://wuss.wra.gov.tw/)。
[10] 行政院經濟部水利署水利規劃試驗所,農業迴歸水回收再利用研究-雲林地區為例,2007。
[11] 行政院經濟部水利署,灣地區農業迴歸水再利用調查潛勢分析與營運管理研究(1/2),2008。
[12] 行政院經濟部水利署,灣地區農業迴歸水再利用調查潛勢分析與營運管理研究(2/2),2009。
[13] 行政院經濟部農委會農糧署,農業統計年報資料,2011,(http://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx)。
[14] 行政院經濟部農委會農糧署,臺灣地區耕地面積,2011,(http://www.afa.gov.tw/Public/GrainStatistics/2012671248177055.pdf)。
[15] 行政院經濟建設委員會,農業水資源再利用於民生工業用水推動研析,2012。
[16] 林介俞,建構因地制宜人工溼地規劃流程步驟—以高雄縣橋頭鄉第一大排區域設置人工溼地為例,碩士論文,國立高雄大學都市發展與建築研究所,高雄,2004。
[17] 林志銘,番子田埤迴歸水調查分析與水質改善對策研擬,碩士論文,國立成功大學水利及海洋工程學系專班,台南,2006。
[18] 林學正、簡道南,肥料之種類與性質,台灣農家要覽(二)-土壤肥料,張金城主編,財團法人豐年社編印,2005,第511-518頁。
[19] 吳正宗,認識化學肥料,臺南區農業改良場技術專刊,第132期,2005,第24-64頁。
[20] 吳添益、蔡政賢、張素真,水稻合理化施肥技術,苗栗區農業專訊,42期, 2008,2-4頁。
[21] 吳瑞賢、林癸妙、李俊福,「水田回歸水之研究」,農業工程學報,第45 卷,第1 期,1999,第72-82 頁。
[22] 洪崑煌,水田土壤Eh 值之測定。中國農業化學會誌,第21卷,1983,p171-177。
[23] 洪崑煌,浸水土柱Eh 值測定法之改進。中國農業化學會誌,第21卷,1983,p178-185。
[24] 徐輝明、趙紹錚,農業區坡地土壤特性調查分析,財團法人台北市七星農田水利研究發展基金會,2003。
[25] 陳世楷,「都會區水田公益功能之調查與推廣」,行政院農業委員會推廣水田生態環境保護及地下水涵養補注計畫成果報告,2003,第9-1~9-22頁。
[26] 陳世楷、劉振宇、陳榮松、張淯傑、陳世宗,「水稻梯田水土保持之試驗研究」,水稻田農業多樣性機能研討會,台中,2005,第189-202頁。
[27] 陳昆宏,應用土壤水分及氮平珩藕合模式評估坡地水稻田氮汙染潛勢,碩士論文,台北科技大學大學土木及防災研究所,台北,2010。
[28] 陳書銘,施肥影響坡地水田迴歸水質調查之研究,碩士論文,台北科技大學大學土木及防災研究所,台北,2010。
[29] 陳尊賢,「土壤與肥料講義」,僑務委員會中華函授學校出版,2003。
[30] 陳榮五、賴文龍,「推動作物合理化施肥成果」,臺中區農業改良場,2008。
[31] 陳榮五、李健捀、郭孚燿、廖萬正,作物合理化施肥技術,臺中區農業專訊61期,2008,24-25頁
[32] 陳豐文,農地可再利用迴歸水之調查研究-以桃園地區為例,碩士論文,中原大學土木工程學系,桃園,1988。
[33] 黃山內,台灣東部水田土壤甲烷氣體之釋放及其影響因子,花蓮區農業改良農業彙報第16輯,1996,pp.35-46
[34] 張又仁,農業灌溉水對水體水質汙染之研究,碩士論文,國立交通大學土木工程系所,新竹,2005。
[35] 張英勝,水稻田還原電位的變異及管理,碩士論文,國立中興大學土壤學研究所,台中,1983。
[36] 張格綸,應用蒸發皿係數推估地區徵發散量之研究,碩士論文,國立成功大學資源工程學系,台南,2007。
[37] 張繼中,水稻之合理化施肥技術,台東農業改良場,水稻合理化施肥暨栽培管理講習會,2009。
[38] 潘昶儒、余宣穎、黃井約,水稻優質栽培施肥管理模式,花蓮區農業專訊,第六十五期,2008,12-15頁。
[39] 駱安華,「回歸水之計算和應用」,台灣水利,第8卷,第2期,1960,第47-56頁。
[40] 譚鎮中、王銀波,溫室氣體通量測定及減量對策-畜產廢棄物堆積及施用之甲烷釋放與減量對策(II),中興大學土壤環境科學系,1999。
[41] Chen, S. K., C. S. Jang, S. M. Chen and K. H. Chen, “Effect of N-fertilizer application on return flow water quality from a terraced paddy field in Northern Taiwan,“Paddy And Water Environment, DOI: 10.1007/s10333-011-0298-7.
[42] Chung, S. O., H. S. Kim and J. S. Kim, “Model development for nutrient loading from paddy rice fields,“ Agricultural Water Management,vol. 62,no. 1,2003,pp. 1-17.
[43] Chowdary, V. M., N. H. Rao and P. B. S. Sarma, “A coupled soil water and nitrogen balance model for flooded rice fields in India,” Agriculture, Ecosystems and Environment, vol. 103, no. 3, 2004, pp. 425-441.
[44] Ding, C. P., Z. G. Liu and T. R. Yu, “Determination of reducing substances in soils by a Voltammetric method,“ Soil Science, vol. 134,no. 4,1982, pp. 252-257.
[45] Doran, G., P. Eberbach and S. Helliwell, “The impact of rice plant roots on the reducing conditions in flooded rice soil,“ Chemosphere ,vol. 63,no. 11,2006, pp. 1892–1902.
[46] Fuchs, J. W., G. Fox, D. Storm, C. Penn and G. Brown, “Subsurface Transport of Phosphorus in Riparian Floodplains: Tracer and Phosphorus Transport Experiments,” An ASABE Meeting Presentation, 2008, No.084614.
[47] Gronning Engineering Company, “Ground Water Development Augmentation and Exchange Plans for the city of Colorado Springs,” Rep.Denver Colo., 1989.
[48] Horn, M. A., “User's Manual for the New England Water-Use Data System (NEWUDS),” U.S. Geological Survey Open-File Report 01-328, 2002.
[49] Kao, Y. H., C. W. Liu, C. S. Jang, S. W. Zanh and K. H. Lin, “Assessment of nitrogen contamination of groundwater in paddy and upland fields ,“ Paddy Water Environ, vol. 9,no. 3, pp. 301–307.
[50] Kim, J. S., S. Y. Oh and K. Y. Oh, “Nutrient runoff from a Korean rice paddy watershed during multiple storm events in the growing season,” Journal of Hydrology, vol. 327, no. 1-2, 2006, pp. 128-139.
[51] Kim, T. C., U. S. Gim, J. S. Kim and D. S. Kim, “The multi-functionality of.paddy farming in Korea,” Paddy Water Environ, vol. 4, no. 4, 2006, pp. 169-179.
[52] Liang, X. Q., Y. X. Chen, H. L., G. M. Tian, W. Z. Ni, M. M. He and Z. J. Zhang, “Modeling transport and fate of nitrogen from urea applied to a near-trend paddy field,” Environmental Pollution, vol. 150, 2007, pp. 313-320.
[53] Liu, C. W., H. C. Hung, S. K. Chen and Y. M. Kuo, “Subsurface Return Flow and Groundwater Recharge of Terrace Fields in Northern Taiwan,” Journal of the American Water Resources Association, vol. 40, no. 3, 2004, pp. 603-614.
[54] Liu C. W.,S. W. Zhang, K. H. Lin and W. T. Lin, “Comparative analysis of temporal changes of multifunctionality benefit of two major rice paddy plains in Taiwan,“ Paddy and Water Environment ,vol. 8,no. 2 ,2010, pp. 199-205.
[55] Nakasone, H., H. Kuroda, T. Kato and T. Tabuchi, “Nitrogen removal from water containing high nitrate nitrogen in a paddy field (wetland),” Water Science and Technology, vol. 48, no. 10, 2003, pp. 209-217.
[56] Matsuno, Y., K. Nakamura, T. Masumoto, H. Matsui, T. Kato and Y. Sato, “Prospects for multifunctionality of paddy rice cultivation in Japan and other countries in monsoon Asia,“ Paddy and Water Environment,vol. 4,no. 4,2006,pp. 189-197.
[57] Oad, R., K. Lusk and P. Podmore, “CONSUMPTIVE USE AND RETURN FLOWS IN URBAN WATER USE,“ ASCE, Journal of Irrigation and Draingae Engineering,Vol. 123,No. 1,1997,pp. 62-69.
[58] R. A. Olson and L. T. Kurtz, “Crop nitrogen requirements, utilization and fertilization,” In Nitrogen in Agricultural Soils, Stevenson, F. J., Ed., Agronomy Monograph 22, Madison, WI, 1982, 567.
[59] Rostaminia, M., S. Mahmoodi, H. T. Gol Sefidi, E. Pazira and S. B. Kafaee, “Study of Reduction-Oxidation Potential and Chemical Charcteristics of a Paddy Field During Rice Growing Season,“ Journal of Applied Sciences , vol. 11, no. 6,2011,pp. 1004-1011.
[60] US EPA (Environmental Protection Agency), 1985. DRASTIC: a standard system for evaluating groundwater potential using hydrogeological settings, Ada, Oklahoma WA/EPA Series 163.
[61] Wopereis, M. C. S., B. A. M. Bouman, M. J. Kropff, H. F. M ten Berge and A. R. Maligaya, “Water use efficiency of flooded rice fields. (I) Validation of the soil-water balance model SAWAH,” Agricultural Water Managet, vol. 26, no. 4, 1994, pp. 277-289.
[62] Wang, K., Z. Zhang, Y. Zhu, G. Wang, D. Shi and P. Christie, “Surface water phosphorus dynamics in rice fields receiving fertilizer and manure phosphorus,“ Chemosphere, vol. 42,no. 2, 2001, pp. 209–214.
[63] S. S. Yang and E. H. Chang,“Effect of fertilizer application on methane emission/production in the paddy soils of Taiwan,” Biol Fertil Soils, vol. 25,no. 3,1997 ,pp. 245–251.
[64] Stoop, W. A., N. Uphoff and A. Kassam, “A review of agricultural research issues raised by the system of rice intensification (SRI) from Madagascar: opportunities for improving farm systems forresource-poor farmers,” AgricSyst, Vol. 71,no. 3, 2002, pp. 249–274.
[65] Wijebandara, D. M. D. I., G. S. Dasog, P. L. Patil and M. Hebbar, ‘Effect of Nutrient Levels and Biofertilizer on Growth and Yield of Paddy under System of Rice Intensification (SRI) and Conventional Methods of Cultivation,’ Tropical Agricultural Research, Vol. 20, 2008, pp. 343 – 353.
[66] Zhao, L.M., L. H. Wu, Y. Li, Animesh S, D. Zhu and N. Uphoff “Comparisons of yield, water use efficiency, and soil microbial biomass as affected by the system of rice intensification,” Commun Soil Sci Plant, Vol. 41,2010, pp.1–12.
[67] Zhang, H. C., Z. H. Cao, R. Q. Shen and M. H. Wong, “Effect of phosphate fertilizer application on phosphorus (P) losses from paddy soils in Taihu Lake Region. (I) Effect of phosphate fertilizer rate on P losses from paddy soil,” Chemosphere, vol. 50, no. 6, 2003, pp. 695-701.
[68] Zulu, G., M. Toyota and S. Misawa, “Characteristics of water reuse and its effect on paddy irrigation system water balance and Riceland ecosystem,” Agricultural Water Management, vol. 31, no. 3, 1996, pp.269-283.
論文全文使用權限:同意授權於2015-08-14起公開