現在位置首頁 > 博碩士論文 > 詳目
論文中文名稱:猴山岳步道邊坡的滑動方向分析 [以論文名稱查詢館藏系統]
論文英文名稱:Sliding Direction Analysis at a Landslide Site near the Mt. Houshanyue Hiking Trail [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:100
出版年度:101
中文姓名:洪政豪
英文姓名:Cheng-Hao Hung
研究生學號:99428070
學位類別:碩士
語文別:中文
口試日期:2012-07-31
論文頁數:118
指導教授中文名:陳偉堯
口試委員中文名:蔡富安;張國禎;朱子偉
中文關鍵詞:邊坡滑動方向分析眾人分工智慧質點影像分析
英文關鍵詞:SlopeAnalysis of sliding directionMechanical TurkParticle Image Velocimetry
論文中文摘要:台灣地區每遇颱風及梅雨季節往往造成許多坡地災害發生,導致土石流以及邊坡滑動產生,人民生命財產安全損失甚巨。而產生崩塌滑動地區,往往因為不知道邊坡滑動的確切方向,影響進一步的分析和研究。
本研究針對台北市文山區猴山岳步道台電345kv-039塔柱旁之邊坡,因為在2008年至2009年間,卡玫基、鳳凰及辛樂克等颱風所帶來的豪大雨量造成猴山岳研究區域產生大規模的邊坡滑動。因此,針對邊坡滑動區域使用民國95年、民國97年和民國98年等不同時期之航照影像進行影像分析,利用眾人分工智慧的方式,從98年崩塌後拍攝的航照影像對邊坡滑動區域及滑動區域外圍之樹木挑選出44棵明顯且可辨識的樹木進行樹木輪廓數化,提供給30位參與的測驗人員對照崩塌前95年和97年的航照影像,找出樹木在滑動前的原始位置,以樹木的移動距離以及移動方向作為研究區域的邊坡滑動方向之依據。分析的結果顯示,樹木的移動方向多偏向於北北東,滑動的最大距離約為20至25公尺。應用質點影像分析(Particle Image Velocimetry, PIV)技術,從航照影像上比較崩塌前後時期的水平位移量的變化,最後比較使用PIV分析結果是否與眾人分工智慧分析的結果相似,並歸納兩種分析方式之優缺點。
論文英文摘要:There used to be many disasters happing in the reason of typhoon and plum rain in Taiwan area, which caused many slope disasters such as debris flow and slope sliding, leading to huge loss and threat of safety for people. Since the sliding direction of the slope used to be unknown, accurate analysis and research is thus unavailable.
This study took the slope beside the 345kv-039 tower column of Taiwan Power Company alongside the trail of Mt. Houshanyue in Wenshan District in Taipei. A large-scale slope sliding happened in the subject area, Mt. Houshanyue, due to enormous rainfall brought along by typhoons Kalmaegi, Phoenix, and Sinlaku during 2008 and 2009. Therefore, this study used aerial pictures of the slope sliding area taken during 2006, 2008, and 2009 to conduct image analysis in the way of Mechanical Turk.
Here, 44 obvious and recognizable trees in the aerial pictures taken after the slope sliding were selected for contour digitalization which were then presented to 30 participants for contrasting with the same trees in the aerial pictures taken in 2006 and 2008, in order to find their original location before sliding. Subsequently, sliding displacement and direction of the tress were employed as foundation for research on slope sliding direction of the subject area. The result showed that these trees tended to move towards NNE with maximum displacement around 20 to 25m. The technology of Particle Image Velocimetry (PIV) was applied to figure out displacement variation before and after slope sliding by contrasting the aerial pictures. Finally this study compared the result of PIV analysis with that generated by Mechanical Turk, and summed up advantage and insufficiency.
論文目次:中文摘要 i
ABSTRACT ii
誌 謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究架構與方法 1
第二章 研究區域介紹 3
2.1 猴山岳背景概述 3
2.2 地形概況 4
2.3 地質概況 4
第三章 眾人分工智慧進行樹木位移量測 7
3.1 眾人分工智慧介紹 7
3.1.1 前人研究 7
3.2 研究流程 11
3.3 眾人分工智慧分析成果及探討 12
3.3.1 位移量分析 12
3.3.2 方向性分析 16
3.3.3 現地概況比較 21
3.4 結論 30
第四章 應用質點影像分析航照影像變化 31
4.1 質點影像分析應用 31
4.2 前人研究 31
4.3 質點影像基本理論 36
4.3.1 交互關聯性法 37
4.4 PIV分析設計與結果 38
4.4.1 影像資料 39
4.4.2 搜索視窗大小分析 42
4.4.3 搜索視窗移動量分析 50
4.4.4 PIV初步分析結果 58
4.4.5 相關性係數分析 62
4.4.6 PIV改良分析之方法與結果比較 74
4.5 討論 77
第五章 結論與建議 79
5.1 結論 79
5.2 建議 80
參考文獻 81
附錄A : 九十五年比較九十八年樹木位移量統計表 84
附錄B : 九十七年比較九十八年樹木位移量統計表 87
附錄C : 九十五年量測九十八年位移後樹木位置方位角 90
附錄D : 九十七年量測九十八年位移後樹木位置方位角 93
附錄E : 辛樂克文山區猴山岳步道0k+200處邊坡崩塌搶修工程地質鑽探工作報告 96
附錄F : 貓纜塔基及場站基礎地質柱狀圖建置及地質敏感區研究 103
論文參考文獻:參考文獻
[1] Debella-Gilo, M., and Kaab, A. (2011). “Sub-Pixel Precision Image Matching for Measuring Surface Displacements on Mass Movements Using Normalized Cross-Correlation,” Remote Sensing of Environment, Vol. 115, Issue. 1, pp. 130-142.
[2] Gilbert, R. A. (2002). “Evaluation of FFT Based Cross-Correlation Algorithms for Particle Image Velocimetry,” A thesis, University of Waterloo.
[3] Heer, J., and Bostock, M. (2010). “ Crowdsourcing Graphical Perception: Using Mechanical Turk to Assess Visualization Design,” Conference on Human Factors in Computing Systems-Proceedings, Vol. 1, pp. 203-212.
[4] Horvath, P., Jermyn, I., Kato, Z., and Zerubia, J. (2006). “A Higher-Order Active Contour Model for Tree Detection,” Proceedings – International Conference on Pattern Recognition, Vol. 2, art. 1699164, pp. 130-133.
[5] Kass, M., Witkin, A., and Terzopoulos, D. (1988). “Snakes: Active Contour Models,” International Journal of Computer Vision, vol. 1, issue. 4, pp. 321-331.
[6] Little, G., Chilton, L. B., Goldman, M., and Miller, R. C. (2009). “TurKit: Tools for Iterative Tasks on Mechanical Turk,” Proceedings of the ACM SIGKDD Workshop on Human Computation HCOMP ‘09, art. no. 1600159, pp. 29-30.
[7] Marge, M., Banerjee, Satanjeev., and Rundnicky, A. I. (2010). “Using the Amazon Mechanical Turk for transcription of spoken language,” ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing Proceedings, art. no. 5494979, pp. 5270-5273.
[8] Ribeiro, F., Florencio, D., and Nascimento, V. (2011). “Crowdsourcing Subjective Image Quality Evaluation,” Proceedings-International Conference on Image Processing, ICIP, art. no. 6116320, pp. 3097-3100.
[9] Raffel, M., Willert, C., Wereley, S., and Kompenhans, J. (2007) “Particle Image Velocimetry : A Practical Guide,” Springer.
[10] Travelletti, J., Delacourt, C., Allemand, P., Malet, J. P., Schmittbuhl, J., Toussaint, R., and Bastard, M. (2012). “Correlation of Multi-Temporal Ground-Based Optical Images for Landslide Monitoring: Application Potential and Limitations,” ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 70, pp. 39-55.
[11] Tseng, C. H., Hu, H. C., Chan, Y.C., Chu, H. T., Lee, J. F., Wei, J. Y., Lu, C. Y., and Lin, M. L. (2009). “Non-Catastrophic Landslide Induced by the 7.6 Chi-Chi Earthquake in Central Taiwan as Revealed by PIV Analysis,” Tectonophysics, Vol. 466, Issue. 3-4, pp. 427-437.
[12] Wang, L., Gong, P., and Biging, G. S., (2004). “Individual Tree-Crown Delineation and Treetop Detection in High-Spatial-Resolution Aerial Imagery,” Photogrammetric Engineering and Remote Sensing, Vol. 70, no. 3, pp. 351-357.
[13] White, D. J., Take, W. A. and Bolton, M. D. (2003). “Soil Deformation Measurement Using Particle Image Velocimetry (PIV) and Photogrammetry,” Geotechnique, Vol. 53, Issue. 7, pp. 619-631.
[14] Wang, K. L., and Lin, M. L. (2011). “Initiation and Displacement of Landslide Induced by Earthquake- A Study of Shaking Table Model Slope Test,” Engineering Geology, Vol. 122, Issue. 1-2, pp. 106-114.
[15] Westerweel, J., and Searano, F. (2005). “Universal Outlier Detection for PIV Data,” Experiments in Fluids, vol. 39, Issue, 6. Pp. 1096-1100.
[16] 呂真謀,李明靜,賴泉基,詹勳全,林國暉 (2008),影像分析法應用於土石流表面速度計算之研究,農業工程學報,第54卷,第1期。
[17] 張詠詠 (2009),潛移深層地滑邊坡案例之變形特徵與運動歷程探討,碩士論文,國立台北科技大學資源工程研究所。
[18] 曾木崧 (2011),以空照應用PIV探討大安溪蘭勢溪大橋河段變遷,碩士論文,國立交通大學土木工程學系。
[19] 童士桓,朱晃揆,翁孟嘉,施明祥,陳浩秋 (2011),數位影像相關係數法於擋土牆監測之應用,The Conference on Current Researched in Geotechnical Engineering in Taiwan,Aug. 25-26, 2011 In Geotechnical Engineering in Taiwan, Taoyuan。
[20] 經濟部中央地質調查所,地質資料查詢,地質資料整合查詢,http://gis.moeacgs.gov.tw/gwh/gsb97-1/sys8/index.cfm。
[21] 臺北市政府工務局大地工程處,山坡地環境地質系統,GIS地理資訊,http://tcgemis.taipei.gov.tw/gisweb/WEBGIS.aspx。
[22] 趙宥睿(2012),數值地形模型精度評估及應用-以猴山岳地滑區為例,碩士論文,國立臺北科技大學。
[23] 蔡維哲 (2004),應用航空影像分析於邊坡位移場之方法研究,碩士論文,國立台灣大學土木工程研究所。
[24] 羅家明,林銘朗,董家鈞,簡士堯,黃安斌 (2009),應用地形分析、遙測影像判釋與PIV技術於紅菜坪地滑特徵及其分區之研究,中國土木水利工程學刊,第21卷,第2期,第113-128頁。
論文全文使用權限:不同意授權