現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:介接淹水模式於即時作業平台 [以論文名稱查詢館藏系統]
論文英文名稱:Adapt Flood Simulation Models to Real-time operational Platform [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:100
出版年度:101
中文姓名:陳柏愷
英文姓名:Bo-Kai Chen
研究生學號:99428058
學位類別:碩士
語文別:中文
口試日期:2012-07-23
論文頁數:108
指導教授中文名:張哲豪
指導教授英文名:Che-Hao Chang
口試委員中文名:連和政;許至璁;楊元森
口試委員英文名:Ho-Cheng Lien;Chih-Tsung Hsu;Yuan-Sen Yang
中文關鍵詞:FEWS_Taiwan模式整合淹水模式SOBEKTELEMAC
英文關鍵詞:FEWS_Taiwanmodel integratingflood simulation modelSOBEKTELEMAC
論文中文摘要:現階段防洪預警作業技術,可藉由即時水文氣象觀測或預測資料內容,銜接水文水理模式,模擬計算得到現況與預測河川水位高程,提供防汛應變決策人員判斷之依據。但因水文氣象資料的高變異性以及洪水發生機率逐漸增加之情況下,往往因為洪水災害來得又急又快,進而造成地區應變時間減少,導致外水溢淹,造成沿岸地區民眾生命財產損失。為使地區應變時間增加,藉由即時預報平台進行淹水範圍預報已成為一種趨勢。
目前即時水情預報之架構下,其預報精確度僅至河川警戒水位,在複雜地形情況下,精確度僅能提供淹水趨勢,對於鄉鎮市區層級之防災應變決策判斷依據不夠充足,導致防災應變決策有失準之風險。而淹水模式對複雜地形預報精確度較高,可相對清楚淹水範圍及深度。如能實作整合淹水模式至即時預報平台,配合即時預報平台本身多種水文氣象資料來源及多模式架構,提升淹水預報本身之可靠度,將可於防汛作業時期提供決策者更多參考依據。
本研究將利用水利署與荷蘭Deltares Hydraulics所共同發展的即時水情預報平台FEWS_Taiwan做為模式整合架構核心,同時藉由歸納FEWS_Taiwan平台在實作整合執行之共通流程,並將其共通流程應用於SOBEK模式與開放原始碼的TELEMAC-2D水理模式。藉由FEWS_Taiwan平台整合執行共通性視點,分析兩種二維水理模式在整合執行上之資訊架構,以評估了解SOBEK模式以及TELEMAC-2D水理模式整合至即時預報平台之可行性及難易度,並於研究過程中同時研擬淹水模式整合標準流程,減少日後模式整合、維護之成本。
論文英文摘要:At the moment the technology of the affair of flood protection and warning can be integrating hydroglogic and hydraulic models based on real-time hydrometeorological observation and forecast data, in order to figure out current state and forecast river level elevation through simulation and calculation so as to serve as reference for policy maker in determining decisions in flood protection.

Since the hydrometeorological data has high variability and the probability of flood is increasing, floods often occur suddenly and allow less responding time for the suffering areas, which lead to loss of life and property for people residing at coastal areas due to overflowing of outer water. In order to increase response time for such areas, forecast about flooded areas announced by a real-time forecast operational platform has become a trend.
The current architecture of real-time flood forecasting system provides displays forecast accuracy covering only warning stages and provides flooding trend only at areas with complicated topography, which is not sufficient for determining policy of disaster protection for the administrative level of township, city, and district, and might lead to risk of incorrect decision making for disaster protection. In contrast, inundation models has higher accuracy in forecast against complicated topography, and so provides clearer range and depth which might be flooded. By integrating inundation models to real-time forecasting operational platform in real case and coordinating it with various hydrometeorological information source and multi-model architecture of the real-time forecasting operational platform in order to enhance reliability of inundation forecast, the policy maker can obtain more information as reference when making decision during flood protection.

This research employs the real-time flood forecasting platform, FEWS_Taiwan, which is jointly developed by our Water Resources Agency and Netherland’s Deltares Hydraulics, as the core of the model-integrating framework. Furthermore, and it summarizes common procedures of FEWS_Taiwan platform set during on-site integrated execution and applies these common procedures to SOBEK mode and TELEMAC-2D hydraulic mode of open source. Through integrated execution of commonality viewpoints of FEWS_Taiwan, this study analyzes the information framework of two 2D hydraulic models during integrated execution in order to assess and figure out feasibility and degree of difficulty of integrating SOBEK model and TELEMAC-2D hydraulic model to real-time forecast platform. Furthermore, this study develops analysis process for integration standard of inundation model simultaneously, in order to reduce cost of future integration and maintenance.
論文目次:中文摘要 i
英文摘要 ii
誌 謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.2.1 國內外水理模式概況 2
1.2.2 水理模式相關應用 6
1.2.3 模式整合 7
1.3 研究架構與方法 8
第二章 平台與模式整合技術概念 10
2.1 即時水文氣象觀測整合平台 10
2.1.1 FEWS_Taiwan水情預報平台 11
2.1.2 水情預報之不確定性 13
2.2 平台銜接外部模式 14
2.2.1 模式銜接工作階段 15
2.2.2 General Adapter模組 18
2.2.3 Workflow工作流程 20
2.3 外部模式銜接平台所需設定檔 22
2.4 FEWS_Taiwan平台整合模式之優點 24
第三章 二維模式資訊架構分析 28
3.1 模式整合共通性探討 28
3.2 SOBEK模式 31
3.2.1 模式基礎理論 32
3.2.2 模式專案架構及執行 34
3.3 TELEMAC模式 36
3.3.1 模式基礎理論 37
3.3.2 模式專案架構及執行 38
3.4 模式整合需求分析 48
第四章 介接技術實作 50
4.1 模式專案模擬區域簡介 51
4.2 實作模式整合相關工作階段 51
4.3 SOBEK模式整合 53
4.3.1 取得模式專案及設定調整階段 54
4.3.2 建立模式於平台執行環境階段 55
4.3.3 實作模式General Adapter階段 56
4.3.4 平台與模式銜接設定階段 64
4.4 TELEMAC模式整合 70
4.4.1 取得模式專案及設定調整階段 71
4.4.2 建立模式於平台執行環境階段 73
4.4.3 實作模式General Adapter階段 74
4.4.4 平台與模式銜接設定階段 78
4.5 整合成果探討 85
第五章 結論與建議 93
5.1 結論 93
5.2 後續研究方向與建議 94
參考文獻 95
附錄
A:TELEMAC Serafin格式標準 99
B:TELEMAC-2D Basic Training 102
論文參考文獻:[1] 林士浩,六小時雨量預報資訊之即時校正與分析,碩士,國立台北科技大學,台北,2012。
[2] 邱煌升,以OpenMI架構整合都市降雨逕流模式與雨水下水道模式,碩士,國立中原大學,桃園,2008。
[3] 馮威勝,建構FEWS_Taiwan 與模式連結之標準作業方式,碩士,國立台北科技大學,台北,2010。
[4] 國家高速網路與計算中心,水文氣象觀測整合平台擴充建置(2/2),經濟部水利署,2009。
[5] 國立台灣大學水工試驗所,水文氣象資訊與水文水理系統模式整合之研發 (1/2),經濟部水利署,2002。
[6] 國立台北科技大學,海象資訊及多模式庫整合於水文氣象觀測整合平台之應用研究(1/2),經濟部水利署,2009。
[7] 國立台北科技大學,海象資訊及多模式庫整合於水文氣象觀測整合平台之應用研究(2/2),經濟部水利署,2010。
[8] 蔡佳璋,綜合治水對策中SOBEK淹水模式之應用─以雲林南部沿海地區為例,碩士,國立中興大學,台中,2006。
[9] 廖英博,FEWS&DEWS水旱災預警作業模式教育訓練-課程講義,2006。
[10] A. Hayir, B. Seseogullari, I. Kilinc, A. Erturk, H.K. Cigizoglu, M.S. Kabdasli, O. Yagci, K. Day. "Scenarios tsunami amplitudes in the north eastern coast of Sea of Marmara generated by submarine mass failure," Coastal Engineering, 55, 2008, pp.333-356.
[11] Albrecht H. Weerts, Jaap Schellekens and Frederiek Sperna Weiland. "Real-Time Geospatial Data Handling and Forecasting: Examples From Delft-FEWS Forecasting Platform/System," IEEE Jouranal of selected topics in applied earth observations and remote sensing, vol. 3, 2010, pp.386-394.
[12] Anthony M. Castronova, Jonathan L. Goodall, Mehment B. Ercan. "Intergrated modeling within a Hydrologic Infirmation System: An OpenMI Based approach," Environmental Modelling & Software, 2012, pp.1-11.
[13] BlueKenue, http://www.nrc-cnrc.gc.ca/eng/ibp/chc/software/kenue/blue-kenue.html, 2012.
[14] C. A. Vionnet, P. A. Tassi and J. P. Mart’ın Vide. "Estimates of flow resistance and eddy viscosity coefficients for 2D modelling ob vegetated floodplains," Hydrol. Process., 18, 2004, pp.2907-2926.
[15] C. Briere, S. Abadie, P.Bretal, P. Lang. "Assessment of TELEMAC system performances, a hydrodynamic case study of Anglet, France," Coastal Engineering, 54, 2007, pp.345-356.
[16] C. Moulinec, C. Denis, C.-T.Pham, D. Rouge, J.-M. Hervouet, E. Razafindrakoto, R.W. Barber, D.R. Emerson, X.-J. Gu. "TELEMAC: An efficient hydrodynamics suite for massively parallel architectures," Computers & Fluids, Vol. 51 , 2011, pp. 30-34.
[17] D.J. Penton, B.P. Leighton, M.P. Stenson, J.M. Rahman, M. Bethune. "Linking hydrological simulation models with workflow and optimisation software, " 19th International Congress on Modelling Simulation, Australia, 2011, pp.12-16.
[18] Deltares Public Wiki, http://publicwiki.deltares.nl/display/WIKI/Public+Wiki
[19] F. Fotopoulos, C. Makropoulos, M.A. Mimikou. "Flood forecasting in transboundary catchments using the Open Modeling Interface," Environmental Modelling & Software, Vol. 25, 2010, pp.1640-1649.
[20] FudaaPrePro, http://prepro.fudaa.fr/index.en.php, 2012.
[21] Giuliano Di Baldassarre, Guy Schumann, Paul D. Bates, Jim E. Freer and Keith J. Beven. "Flood-plain mapping: a critical discussion of deterministic and probabilistic approaches," Hydrological Sciences Journal, Vol. 53, 2010, pp.364-376.
[22] I. Kilinc, A.Hayir, H.K. Cigizoglu. "Wave dispersion study for tsunami propagation in the Sea of Marmara," Coastal Engineering, 56, 2009, pp.982-991.
[23] J. R. FRENCH. "Airborne LiDAR in support of Geomorphological and Hydraulic Modelling," Earth Surface Processes and Landforms, Vol. 28, 2003, pp.321-335.
[24] J.-M. Hervouet. "A high resolution 2-D dam-break model using parallelization," Hydrological Processes, Vol. 14, 2000, pp.2211-2230.
[25] James A. Smith, Andrew J. Miller, Mary Lynn Baeck, Peter A. Nelson, Gary T. Fisher, Katherine L. Meierdiercks. "Extraordinary Flood Response of a Small Urban Watershed to Short-Duration Convective Rainfall," Journal of Hydrometeorology, Vol. 6, 2005, pp.599-617.
[26] John Eric Jones and Alan M. Davies. "Storm surge computations for the west coast of Britain using a finite element model (TELEMAC)," Ocean Dynamics, Vol. 58, 2008, pp.337-363.
[27] Jonathen L. Carrivick. "Application of 2D hydrodynamic modelling to high-magnitude outburst floods: An example from Kverkjὅll, Iceland," Journal of Hydrology, Vol. 321, 2006, pp.187-199.
[28] Kittiwet Kuntiyawichai, Bart Schultz, Stefan Uhlenbrook, F. X. Suryadi and A. Van Griensven. "Comparison of Flood management options for the Yang river basin, Thailand," IRRIGATION and DRAINAGE, Vol. 60, 2011, pp.526-543.
[29] M.s. Horritt, P.D. Bates. "Evaluation of 1D and 2D numerical models for predicting river flood inundation," Journal of Hydrology, Vol. 268, 2002, pp.87-99.
[30] National Oiceabic and Atmospheric Administration, Evaluation of different Hydraulic Models in support of National Weather Service Operations, America, 2007.
[31] OpenMI Standard, http://www.openmi.org/, 2012.
[32] OpenTELEMAC, http://www.opentelemac.org/index.php, 2012.
[33] Petteri Alho and Juha Aaltonen. "Comparing a 1D hydraulic model with a 2D hydraulic model for the simulation of extreme glacial outburst floods," Hydrological processes, Vol. 22, 2008, pp.1537-1547.
[34] I. popescu, A. Jonoski, S.J. Van Andel, E. Onyari, V.G. Moya Quiroga. "Integrated modelling for flood risk mitigation in Romania: case study of the Timis-Bega river basin," Intl. J. River Basin Management, Vol.8, 2010, pp.269-280.
[35] Qingyun Duan, Newsha K. Ajami, Xiaogang Gao, Soroosh Sorooshian. "Multi-Model ensemble hydrologic prediction using Bayesian model averaging," Advances in Water Resources, 30, 2006, pp.1371-1386.
[36] S. Neelz and G Pender, Benchmarking of 2D Hydraulic Modelling Packages, Environment Agency, 2010.
[37] Sander Janssen, Ioannis N. Athanasidis, Irina Bezleokina, Rob Knapen, Hongtao Li, Ignacio Perez Dominguez, Andrea Emilio Rizzoli, Martin K. van Ittersum. "Linking models for assessing agricultural land use change," Computers and Electronics in Agriculture, Vol.76, 2011, pp.148-160.
[38] SOBEK User Manual, http://sobek-re.deltares.nl/sobek_re/doc/usedoc/UserManual.pdf, 2012.
[39] Tesfaye Haimanot Tarekegn, Alemseged Tamiru Haile, Tom Rientjes, P. Reggiani, Dinand Alkema. "Assessment of an ASTER-generated DEM for 2D hydrodynamic flood modeling," International Journal of Applied Earth Observation and Geoinformation, Vol.12, 2010, pp.457-465.
[40] University Corporation for Atmospheric Research, http://www2.ucar.edu/, 2011.
[41] Xin Sun, Koji Shiono, Ponnambalam Rameshwaran and Jim H. Chandler. "Modelling vegetation effects in irregular meandering river," Journal of Hydraulic Research, Vol. 48, 2010, pp.775-783.
論文全文使用權限:同意授權於2015-08-27起公開