現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:猴山岳崩塌地的警戒雨量與土壤沖蝕量分析 [以論文名稱查詢館藏系統]
論文英文名稱:Analysis of Critical Rainfall and Soil Erosion at Houshanyue Landslide [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:100
出版年度:101
中文姓名:連崇吾
英文姓名:Chong-Wu Lian 連崇吾
研究生學號:99428065
學位類別:碩士
語文別:中文
口試日期:2012-07-10
論文頁數:99
指導教授中文名:陳偉堯
口試委員中文名:蔡富安;朱子偉;張國禎
中文關鍵詞:崩塌警戒標準土壤沖蝕量地面雷射掃描儀
英文關鍵詞:Laser ScannerPreliminary Landslide Warning CriteriaUniversal Soil Loss Equation
論文中文摘要:台灣屬於複合型災害頻率高的國家,且位置正好座落於颱風易生成區域的附近,每年夏季必然遭受颱風豪雨侵襲。因降雨時間、強度及空間分布不均,大雨成災與無雨缺水交替的情況愈趨明顯。另一方面,臺灣有超過75%以上是山坡地,各類型的坡地災害亦經常發生。
本研究區域位於臺北市文山區猴山岳步道附近,於2008年到2009年之間,因為連續颱風所夾帶的豪大雨,造成研究區域約10公頃的邊坡滑動,研究利用前人所訂定的臺北市崩塌警戒標準(Lin et al., 2003),進行雨量指標計算的程式開發。雨量指標程式計算結果顯示在2008年因辛樂克颱風影響下,木柵雨量測站之歷史雨量資料所計算出來的雨量指標是明顯超過崩塌警戒基準的。
研究中也參考萬用土壤流失公式(Universal Soil Loss Equation)進行猴山岳崩塌區域的沖蝕量推估,沖蝕量計算結果顯示在發生大規模崩塌之前每年約有53公噸的土壤沖蝕量(2007)。2008年為崩塌過後,研究區域地表植生遭到嚴重破壞,裸露地占總計算面積的31%,土壤沖蝕量每年高達2958公噸。2009年由於地表植生的自然恢復,許多原本為裸露地的區域長出了芒草,土壤沖蝕量從每年的2958公噸降至690公噸。
由於USLE公式的誤差範圍甚大,且上述結果明顯高估,為了評估沖蝕量計算的準確性,研究中使用地面雷射掃描儀進行各獨立邊坡掃描,得到不同時期之數值地形模型,進而計算真實土方量差異,本文中利用單一獨立邊坡的掃描資料進行土壤沖蝕量的準確性評估,結果顯示USLE推估的土壤沖蝕減去真實土方差所得到的誤差值,約為真實土方差的-12%至45%。
論文英文摘要:Taiwan has high frequency of compound disaster and is located nearby the area where typhoon forms easily, so it definitely encounter attack of typhoons and heavy rainfall in summer every year. Due to inconsistent rainfall duration, intensity, and space, the trend of alternation between rainfall caused disaster and rainfall deficit is becoming obvious. Moreover, since slopeland occupies over 75% of Taiwan’s area, various types of slopeland disasters happen often.
Subject of this study is the trail located in Mt. Houshanyue in Wenshan District in Taipei. During 2008, heavy rainfall caused by successive typhoons created about 10 hectares of landslide on the slope. This study adopted the “Standard of Landslide Alert Taipei City (Lin et al., 2003) regulated by former researchers to develop a program for rainfall index calculation. The result of rainfall index program’s calculation showed that under the effect of Typhoon Sinlaku the rainfall observed and the index calculated by rainfall measuring stations in Mucha District obviously exceeded the reference threshold of landslide alert.
This study also adopted Universal Soil Loss Equation to estimate erosion of Mt. Houshanyue’s landslide area. Calculation of erosion indicated that this area has had 53 tons of soil erosion every year before the large-scale landslide (2007). The landslide in 2008 seriously damaged surface vegetation of the subject area which caused 31% share of exposed area of the total area and soil erosion sums up to 2958 tons every year. During 2009, the surface vegetation recovered naturally in this area where much of the exposed area appeared miscanthus and volume of soil erosion reduced from 2959 tons to 690 tons.
In order to calculate volume of soil erosion, this study detected each slope with terrestrial laser scanner. Then it assessed accuracy of soil erosion volume for each slope’s data detected. The result indicated that estimated error of soil erosion volume was between 12% and 45% of difference of soil volume estimated.
論文目次:摘 要 i
ABSTRACT ii
誌 謝 iii
目錄 iv
表目錄 vi
圖目錄 viii
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究架構與方法 1
第二章 猴山岳區域地質災害資料收集 3
2.1 猴山岳地區坡度資料 3
2.2 猴山岳災害潛勢 5
第三章 猴山岳崩塌地雨量分析 9
3.1 猴山岳地區歷史災害記錄 9
3.2 前人研究 16
3.3 雨量指標 18
3.4 雨量資料收集 19
3.5 程式架構 20
3.6 崩塌警戒線 23
3.7 程式執行計算結果 26
3.8 結論 28
第四章 猴山岳土壤沖蝕量計算 30
4.1 前人研究 30
4.2 猴山岳各年份航照圖分析 31
4.3 USLE公式各因子之探討 33
4.3.1 降雨沖時指數 33
4.3.2 土壤沖蝕性指數 35
4.3.3 覆蓋與管理因子 43
4.3.4 水土保持處理因子 44
4.3.5 坡長因子 44
4.3.6 坡度因子 44
4.4 猴山岳沖蝕量計算結果 48
4.5 案例比較 50
4.6 現地量測坡度進行土壤沖蝕量計算 52
4.6.1 修正97年土壤沖蝕量 52
4.6.2 修正98年與99年土壤沖蝕量 63
4.7 研究結果與比較 70
4.8 結論與討論 74
第五章 利用雷射掃描進行USLE準確性評估 77
5.1 前人研究 77
5.2 使用儀器與軟體介紹 79
5.3 小邊坡概況與掃描日期 81
5.4 點雲資料處理 82
5.5 土方量比較 89
5.6 沖蝕量計算 90
5.7 USLE之準確性評估 92
5.8 結論 93
第六章 結論與建議 94
6.1 結論 94
6.2 建議 95
參考文獻 96
論文參考文獻:[1] Abellan, A., Calvet, J., Vilaplana, J.M. and Blanchard, J. (2010). “Detection and Spatial Prediction of Rockfalls by Means of Terrestrial Laser Scanner Monitoring,” Geomorphology, Vol. 119, pp. 162-171.
[2] Besl, P.J., and McKay, N.D. (1992). “A method for registration of 3D shapes,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, No. 2, pp. 239– 256.
[3] Brand, E. W., Premchitt, J. and Phillipson, H. B. (1984). “Relationship between Rainfall and Landslide,” Proceedings of the fourth International Symposium on Landslides, Tornto, 1, Ontario BiTech, Vancouver, Canada, pp.377-384.
[4] Caine, N. (1980). “The rainfall intensity-duration control of shallow landslides and debris flow,” Geografiska Annaler 62(1-2): 23-27.
[5] Cannon, S. H., and Ellen, S.D. (1985). “Rainfall conditions for abundant debris avalanches San Franciso Bay region,” California , California geology 38 (12) : 267-272.
[6] Cook, H. L. (1936). “The nature and controlling variables of the water erosion process,” Soil science Society of American Proceedings, 1, pp.487-494.
[7] Crosta, G. B., and Frattini P. (2001). “Rainfall thresholds for triggering soil slips and debris flow,” In: Mugnai A, Guzzetti F, Roth G (eds) Mediterranean storms. Proceedings of the 2nd EGS Plinius Conference on Mediterranean Storms. Siena, Italy, pp 463–487
[8] Dai, F. C., and Lee, C. F. (2003). “A spatiotemporal modeling of strom-induced shallow landsliding using aerial photographs and logistic regression,” Earth Surf. Process. Landforms 28, pp.527-545.
[9] Du, J. C., and Teng, H. C. (2007). “3D Laser Scanning and GPS Tehnology for Landslide Earthwork Volume Estimation,”Automation in Construction, Vol. 16, pp. 657-663.
[10] Gruen, A., and Akca, D. (2005). “Least Square 3D Surface and Curve Matching,” ISPRS Journal of Photogrammetry & Remote Sensing, Vol. 59, pp.151-174.
[11] Jaboyedoff, M., Demers, D., Locat, J., Locat, A., Locat, P., Oppikofer, T., Robitaille, D., and Turmel, D. (2009). “Use of Terrestrial Laser Scanning for the Characterization of Retrogressive Landslides in Sensitive Clay and Rotational Landslides in River Banks,” Canadian Geotechnical Journal, Vol. 46, No. 12, pp.1379-1390.
[12] Kasperski, J., Delacourt, C., Allemand, P., Potherat, P., Jaud, M., and Varrel, E. (2010). “Applictaion of a Terrestrial Laser Scanner (TLS) to the Study of the Sechilienne Landslide (Isere, France),” Remote Sens, Vol. 2, No. 12, pp.2785-2802.
[13] Lian, C.-W., Chen, W. W., Su, T.-H., Jiang, M.-R. (2012). “A Program to Provide Precursory Warnings for Rainfall-induced Landslides,” The 2nd International Conference on Electric Technology and Civil Engineering (ICETCE 2012), May 18-20, 2012, Three Gorges, Hubei, China.
[14] Lin, M. L., Chen, T. C., Kao, T. C., Yu, W. H., and Huang, L. Y. (2007). “Early Warning System for Landslide Caused by Rainfall – A Case Study of Taipei City,” 2nd International Conference on Urban Disaster Reduction.
[15] Nguyen, H. T., Fernandez, T. N., Wiatr, T., Rodrigues, D., and Azzam, R. (2011). “Use of Terrestrial Laser Scanning for Engineering Geological Applications on Volcanic Rock Slopes – An Example from Madeira island (Portugal),” Nature Hazards Earth System Science, Vol. 11, Issue 3, pp. 807-817.
[16] Prokop, A. and Panholzer, H. (2009). “Assessing the Capability of Terrestrial Laser Scanning for Monitoring Slow Moving Landslides,” Natural Hazards and Earth System Science, Vol. 9, Issue. 6, pp. 1921-1928.
[17] Rathje, E., Kayen, R., and Woo, K. S. (2006). “Remote Sensing Observations of Landslides and Ground Deformation from the 2004 Niigata Ken Chuetsu Earthquake,” Soils and Foundations, Vol. 46, No. 6, pp.831-842.
[18] Sugiyama, T., Okada, K., Muraishi, H., Noguchi, T., and Samizo, M. (1995). “Statistical Rainfall Risk Estimating Method for a Deep Collapse of a Cut Slope,” Soils and Foundations, 35(4):37-48.
[19] Sui, L., Li, J., Wang, X., and Zhao, D. (2009). “Monitoring Landslides Dynamics using Multitemporal Terrestrial Laser Scanning Data,” Proceedings of SPIE – The International Society for Optical Engineering, Vol. 7471, 74711M.
[20] Syahmi, M. Z., Aziz, W. A. W., Zulkarnaini, M. A., Anuar, A., and Othman, Z. (2011). “The Movement Detection on the Landslide Surface by Using Terrestrial Laser Scanning,” Control and System Graduate Research Colloquium(ICSGRC), 2011 IEEE, pp. 175-180.
[21] Wischmeier, W. H., Smith, D. D and Uhland R. E. (1958). Evaluation of factors in the soil loss equation. Agricultural Engineering, 39, pp.458-462.
[22] Wischmeier, W. H., Smith, D. D and Uhland R. E. (1978). Predicting Rainfall Erosion Losses: A Guide to Conservation Department of Agriculture, Washington.
[23] Yu, F. C., Chen, T. C., Lin, M. L., Chen, C. Y., and Yu, W. H., (2006). “Landslides and Rainfall Characteristics Analysis in Taipei City during Typhoon Nari Event,” Natural Hazards, Vol. 37, pp 153-167.
[24] 臺北市產業發展局,http://www.ed.taipei.gov.tw。
[25] 臺北市政府都市發展局,http://www.udd.taipei.gov.tw。
[26] 中央氣象局TDB防災颱風資料庫,http://rdc28.cwb.gov.tw/data.php。
[27] 大地工程學會 (2009),木柵地區大地工程與地質野外考察手冊。
[28] 林美聆、陳天健、林鴻州、游文輝 (2003),臺北市崩塌警戒模式訂定方法之研究,中華水土保持學報34(4),pp.389-399。
[29] 林銘郎,黃韋凱,連俊凱,粘為東,劉桓吉 (2008),台電345Kv-039鐵塔及猴山岳步道附近北側之崩塌案例。
[30] 胡逸舟 (2011),降雨引致山區道路邊坡崩塌潛勢之研究-以阿里山公路為例,博士論文,國立臺灣大學營建工程系。
[31] 李明熹 (2007),土石流發生降與警戒分析及其應用,碩士論文,國利成功大學水利及海洋工程學系。
[32] 范正成、吳明峰、彭光宗(1999),豐丘土石流發生降雨臨界線之研究,地工技術,第74卷,第39-46 頁。
[33] 謝正倫 (1991),「土石流預警系統之研究」,國立成功大學台南水工試驗所,研究試驗報告第130號。
[34] 盧光輝、范正成、林俐玲、黃俊德、吳嘉俊 (1995),土壤沖蝕研究發展技術之改進(二),84年度水土保持及集水區經營研究計畫成果彙編。
[35] 歐陽元淳 (2002),水庫集水區土壤沖蝕之研究-以石門、翡翠水庫為例,碩士論文,國立台灣大學地理環境源學研究所。
[36] 吳嘉俊 (1995),台灣水土保持因子之訂定與波長坡度之研究,中美陡坡土壤流失量估算技術研討會論文集,pp:117-134。
[37] 吳嘉俊、盧光輝、林俐玲(1996),土壤流失量估算手冊,國立屏東科技大學。
[38] 黃俊德(1979)台灣降雨沖蝕指數之研究,中華水土保持學報,10(1),pp.127-144。
[39] 黃俊德、吳嘉俊、徐森雄、陳慶雄(1994),土壤沖蝕與保育之研究-陡坡地果園土壤流失觀測(三),83年度水土保持及集水區經營研究計畫成果,pp 119-148。
[40] 萬鑫森、黃俊德(1989),台灣波地土壤沖蝕,中華水土保持學報20(2),pp.17-45。
[41] 經濟部中央地質調查所坡地環境地質資料庫(2011), http://envgeo.moeacgs.gov.tw/geoenv/default.asp。
[42] 行政院農業委員會水土保持局(2011),http://smap.swcb.gov.tw/Login.asp。
[43] 台北市大地工程處山坡地環境地理資訊系統(2011),http://gisweb.ed.taipei.gov.tw/gisweb/。
[44] 行政院環境保護署(2010a),地方環境資料庫,全國>台北市>環境敏感地區>文化景觀敏感地,http://edb.epa.gov.tw/localenvdb/TaipeiCity/first.asp?admip=TaipeiCity&admit=&item=culture&theme=blue&SelectPage=5%29。
[45] 溫國樑、簡文郁、張毓文、林哲民、黃有志、江賢仁、郭俊翔、張建興、許麗文(2006),台灣地區強地動測站異常場址效應之研究(II),國家地震工程研究中心,175-196 頁。
[46] 蕭國鑫、劉進金、游明芳 及曾義星,「航測與三維雷射掃描資料應用於九份二山地形變化分析」,航測及遙測學刊,第十卷,第二期,2005,第191-202頁。
論文全文使用權限:同意授權於2014-09-03起公開