現在位置首頁 > 博碩士論文 > 詳目
  • 同意授權
論文中文名稱:土壤邊坡於人工降雨下孔隙水壓力分佈之模擬 [以論文名稱查詢館藏系統]
論文英文名稱:Simulation of pore-water pressure distribution of a soil slope under rainfall infiltration condition [以論文名稱查詢館藏系統]
院校名稱:臺北科技大學
學院名稱:工程學院
系所名稱:土木與防災研究所
畢業學年度:101
出版年度:102
中文姓名:趙志偉
英文姓名:Zhi-Wei Zhao
研究生學號:99428030
學位類別:碩士
語文別:中文
口試日期:2012-07-18
論文頁數:139
指導教授中文名:魏敏樺
指導教授英文名:M. W. Gui
口試委員中文名:吳博凱;盧之偉
中文關鍵詞:非飽和土壤數值分析降雨滲流邊坡基質吸力孔隙水壓力
英文關鍵詞:unsaturated soilnumerical analysisrainfall-infiltrationslopematric suctionpore-water pressure
論文中文摘要:台灣四面環海屬於山多平地少的島嶼國家,隨著人口數增加平地開發早已趨於飽和,現在更需與山爭地,每當雨季或颱風降雨豐沛時期,隨著地下水位上升使得邊坡穩定性下降進而引發邊坡沖刷破壞。
本研究以數值分析探討邊坡因降雨入滲導致破壞之機制。首先,建立非飽和土壤之固體力學方程式及滲流偏微分方程式,利用一系列案例驗證其可行性,並採用前人所做的砂箱垂直滲流試驗配合各學者所提出之水力傳導係數及網格之尺寸進行模擬比較其差異性。模擬邊坡模型降雨滲流試驗,觀察土壤內部之含水量、孔隙水壓力、正向應力及剪應力之分佈情形,並與前人所試驗結果進行比較,結果顯示與前人實驗之歷時分佈情形有相同趨勢。最後,探討不同土水特徵曲線與非飽和滲透係數對於邊坡降雨之影響
論文英文摘要:The abundant rainfalls brought by typhoons and during prolonged rainy season have often in the rapid rising of water table. As a result, shallow landslides have often encountered during or after these prolonged rainfall periods.
In this study, the solid mechanics equations and seepage partial differential equation involved in the transient flow of water in unsaturated soil medium have been solved using a numerical tool. The study examined vertical seepage of sand box and rainfall percolation test of slope model. The numerical result was compared to the experimental data of water content, pore-water pressure, normal stress and shear stress. The effects of different soil-water characteristic curves and anisotropic hydraulic conductivity on the patterns were also examined
論文目次:中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 ix
圖目錄 xi
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究方法與內容 1
1.3 論文架構 2
第二章 文獻回顧 5
2.1 前言 5
2.2 非飽和土壤組成 5
2.3 非飽和土壤吸力 6
2.3.1 土水特徵曲線 (Soil-Water Characteristic Curve) 7
2.3.2 預測土水特徵曲線 8
2.3.3 儲水方程式 (Water Storage Function) 8
2.3.4 非飽和土壤水力傳導係數 8
2.4 非飽和土壤應力狀態變量 9
2.5 非飽和土壤體積變形與應變關係 10
2.5.1 非飽和滲流理論 11
2.5.2 非飽和土壤結構關係 13
2.5.3 非飽和土壤壓縮性與液相(水)組合關係 15
2.5.4 非飽和土壤三維流固耦合方程 18
2.6 非飽和土壤之剪力強度 19
2.6.1 飽和土壤破壞理論 19
2.6.2 非飽和土壤破壞理論 19
2.7 楊氏模數 (Young’s modulus, E) 20
2.8 柏松比 (Poisson’s ratio, μ) 21
第三章 數值分析與驗證 33
3.1 一般型偏微分 (General Form PDE) 33
3.2 固體力學 (Solid Mechanics) 35
3.2.1 平衡微分方程 35
3.2.2 有效應力 35
3.2.3 組合律 36
3.2.4 幾何方程 37
3.2.5 固結微分方程 37
3.3 固體力學模組 39
3.3.1 莫爾庫倫準則 (Mohr-Coulomb criterion) 43
3.4 邊界狀態介紹 43
3.5 物理量模組之驗證 44
3.5.1 土石壩之邊界狀態 45
3.5.2 土石壩之分析結果 46
3.5.3 方形土體之邊界狀態 46
3.5.4 方形土體之分析結果 47
第四章 非飽和滲流試驗模擬 61
4.1 實驗設備與感測儀器 61
4.1.1 水份張力計 61
4.1.2 土壤水份計 61
4.1.3 孔隙水壓計 62
4.1.4 邊坡降雨實驗流槽 62
4.1.5 人工模擬降雨設備 62
4.1.6 資料收集器 63
4.2 定水頭飽和滲透係數試驗 63
4.3 直接剪力試驗 64
4.3.1 試驗模型 64
4.3.2 試驗步驟及結果 64
4.3.2.1 非飽和土壤之極限強度參數 65
4.4 砂箱試驗 65
4.4.1 土壤水份張力計試驗 65
4.4.2 垂直滲流試驗 66
4.5 邊坡降雨滲流試驗 66
4.5.1 邊坡模型 66
4.5.2試驗步驟及結果 67
第五章 試驗與模擬結果討論 89
5.1 滲流分析流程 89
5.2 滲流偏微分方程式與固體力學方程式之整合 89
5.3 南投縣眉溪河砂之試驗土樣 91
5.3.1 土水特徵曲線及儲水方程式 91
5.3.2 水力傳導方程式 92
5.3.3 土壤結構及液相(水)變化方程式 93
5.3.4 非飽和剪力強度之方程式 93
5.4 砂箱垂直滲流試驗之模擬 94
5.4.1 邊界狀態 94
5.4.2 土壤含水量 95
5.4.2.1 水力傳導方程式之影響 95
5.4.2.2 網格尺寸之影響 95
5.5 邊坡模型降雨滲流之模擬 96
5.5.1 邊界狀態及網格尺寸 97
5.5.2 邊坡飽和度分佈 97
5.5.3 土壤含水量 98
5.5.4 孔隙水壓力 98
5.5.5 土壤正向應力及剪應力 99
5.5.6 土壤總位移量與向量 99
5.6 非飽和參數之影響 100
5.6.1 異向性滲透係數 100
5.6.2 van Genuchten (1980) 土水特徵曲線參數 101
第六章 結論與建議 131
6.1 結論 131
6.2 建議 132
參考文獻 133
作者簡介 139
論文參考文獻:[1]Aitchison, G. D., and Csiro. (1965). Moisture equilibria and moisture changes in soils beneath covered areas : a symposium in print. Butterworths, South African Council for Scientific and Industrial Research, Sydney.
[2]Biot, M. A. (1941). "General Theory of Three-Dimensional Consolidation." J.Appl.Phys., 12(2), 155-164.
[3]Bishop, A. W. (1960). "The Principles of Effective Stress." Published in Teknis Ukeblad, 106(39), 859-863.
[4]Buckingham, E. (1907). "Studies on the movement of soil moisture. USDA Bur." Soils Bull, 38.
[5]Childs, E. C. (1941). An Intorduction to the physical Basis of Soil Water Phenomena. Wiley-Interscience, London.
[6]Childs, E. C., and Collis-George, N. (1950). "The Permeability of Porous Materials." Proceedings of the Royal Society of London.Series A, Mathematical and Physical Sciences, 201(1066), pp. 392-405.
[7]Croney, D., and Coleman, J. D. (1948). "Soil thermodynamics applied to the movement of moisture in road foundations." Proc. 7th Int. Cong. Appl. Mech, 163-177.
[8]Desai, C. S., and Siriwardane, H. J. (1984). Constitutive laws for engineering materials with emphasis on geologic materials. Prentice Hall.
[9]Fredlund D. G., and Xing A. (1994). "Equations for the soil-water characteristic curve." Canadian Geotechnical Journal, 31(4), 521-532.
[10]Fredlund D. G., Xing A., and Huang S. (1994). "Predicting the permeability function for unsaturated soils using the soil-water characteristic curve." Canadian Geotechnical Journal, 31(4), 533-546.
[11]Fredlund, D. G. (1973). "Volume change behavior of unsaturated soil.". PhD Diss. Alberta, Edmonton, Alta.
[12]Fredlund, D. G., and Morgenstern, N. R. (1977). "Stress state variables for unsaturated soils." Journal of the Geotechnical Engineering Division, 103(5), 447-466.
[13]Fredlund, D. G., and Morgenstern, N. R. (1976). "Constitutive relations for volume change in unsaturated soils." Canadian Geotechnical Journal, 13(3), 261-276.
[14]Fredlund, D. G., Morgenstern, N. R., and WIDGER, R. A. (1978). "The shear strength of unsaturated Soil." Can. Geotech. J., 15 313-321.
[15]Fredlund, D. G., and Rahardjo, H. (1993). Soil mechanics for unsaturated soils. Wiley-Interscience.
[16]Fredlund, D. G. (1987). Slope Stability. John Wiley & Sons Ltd.
[17]Freeze, R. A., and Cherry, J. A. (1979). Groundwater. Englewood Cliffs, NJ:Prentice-Hall.
[18]Gardner, W. R. (1958). "Some Steady State Solution of the Unsaturated Moisture Flow Equation with Application to Evaporation Water Table." Soil Science, 85(4), 228-232.
[19]Gui, M. W. and Hsu., C. S. (2009). "Generalized fitting parameters of threr pedo-transfer functions for predicting water coefficient of permeability of lateritic soil." ASTM Geotechnical Test Journal, 32(5).
[20]Hillel D. (1982). Introduction to soil physics. Soil Sciences, University of Massachusetts, U.S.A.
[21]Ho, D. Y. F., and Fredlund, D. G. (1982). "Increase in Strength due to Suction for Two Hong Kong Soils." Proceeding of ASCE Speciality Conference on Engineering and Construction in Tropical and Residual Soil, Hawii, 263-295.
[22]Huang, C. C., Ju, Y. J., Hwu, L. K., and Lee, J. L. (2009). "Internal soil moisture and piezometric responses to rainfall-induced shallowslope failures." Journal of Hydrology, 39-51.
[23]Huang, C. C., Lo, C. L., Jang, J. S., and Hwu, L. K. (2008). "Internal soil moisture response to rainfall-induced slope failures and debris discharge." Engineering Geology, 101 134-145.
[24]Krahn, J., and Fredlund, D. G. (1972). "On Total, Matric and Osmotic Suction." Soil Science, 114(5), 339-348.
[25]Leong, E. C., and Rahardjo, H. (1997). "Review of Soil-Water Characteristic Curve Equation." Journal of Geotechnical and Geoenvironmental Engineering, 123(12).
[26]Lu, N., and Likos, W. J. (2004). Unsaturated Soil Mechanics. John Wiley and Sons.
[27]Pereira, J. H. F. (1996). "Numerical Analysis of the Mechanical Behavior of Collapsing Earth Dams During First Reservoir Filling.". Ph. D Thesis. University of Saskatchewan, Saskatoon, Canada.
[28]Richards, L. A. (1931). "Cpaillary conduction of liquids through porous mediums." J. Physics, 1(5), 318-333.
[29]Shuai, F. S. (1996). "Simulation of swelling pressure measurements on expansive soils". PhD thesis. Department of Civil Engineering University of Saskatchewan Saskatoon, Canada.
[30]Terzaghi, K. "The Shear Resistance of Saturated Soils." In Proc. Lst Int. Conf. Soil Mech. found. Eng. (Cambridge, MA), 54-56.
[31]Thieu, N. T. M., Fredlund, M. D., Fredlund, D. G., and Hunmg, V. Q. (2001). "Seepage modeling in a saturated/unsaturated soil system." International Conference on Management of the Land and Water Resources, Hanoi, Vietnam, 20-22.
[32]Van Genuchten, M. T. (1980). "A Closed-Equation for Predicting Hydraulic Conductivity of Unsaturated Soils." Soil Science Society of America Journal, 44(5), 892-898.
[33]Vanapalli, S. K., Fredlund, D. G., and Pufha, D. E. (1999). "The influence of soil structure and stress history on the soil-water characteristics of a compacted till." Geotechnique, 49(2), 143-159.
[34]Vu, H. Q. (2002). "Uncoupled and Coupled Solutions of Volume Change Problems in Expansive Soils.". Ph.D. Dissertation. University of Saskatchewan, Sakatoon, Canada.
[35]Williams, P. J. (1982). The aurface of the Earth, an introuction to geotechnical science. Longman Inc, New York.
[36]Zhang, L. (2005). "Probabilistic study of slope stability under rainfall condition". Ph.D. Thesis. Hong Kong University of Science and Technology.
[37]侯雪寒. (2010). "土壤特性與初始條件對雨水入滲之影響". 碩士論文. 朝陽科技大學營建工程系, 台中.
[38]吳家賢. (2010). "非飽和土壤邊坡於人工降雨下暫態孔隙水壓力分佈之數值分析". 碩士論文. 國立台北科技大學土木與防災研究所, 台北.
[39]單信瑜. (2002). "非水相液體於非飽和地層中傳輸行為之特性". 碩士論文. 國立交通大學土木工程系, 新竹.
[40]單信瑜, and 張良正. (2002). "非水相液體於非飽和地層中傳輸行為之特性." 地球系統科學研討會.
[41]拱祥生. (1999). "降雨對不飽和土壤邊坡穩定性之影響研究". 碩士論文. 國立台灣科技大學, 台北.
[42] 李金龍. (2006). "探討降雨與淺層崩塌關係之大型試驗". 碩士論文. 國立暨南國際大學地震與防災工程研究所, 南投.
[43] 蔡孟棻. (2005). "以土壤水份特性曲線評估不飽和土壤邊坡穩定性". 碩士論文. 國立台灣科技大學營建工程系, 台北.
[44] 藍少村. (2008). "降雨導致淺層邊坡破壞之模型試驗與分析". 碩士論文. 國立成功大學土木工程研究所, 台南.
[45] 許俊森. (2006). "林口台地非飽和紅土滲透性質之研究". 碩士論文. 國立台北科技大學土木與防災研究所, 台北.
[46] 陳琮裕. (2010). "利用最佳化原理預測不飽和邊坡於人工降雨下之暫態孔隙水壓分佈". 碩士論文. 國立雲林科技大學營建工程系碩士班, 雲林.
[47]陳進發. (2002). "未飽和層土壤水平衡模式解析及其應用之研究". 博士論文. 國立成功大學資源工程學系, 台南.
[48]雲世傑. (2009). "探討豪雨中邊坡破壞發展過程之模型試驗". 碩士論文. 國立暨南國際大學土木工程研究所, 南投.
[49]駱建利. (2009). "降雨導致邊坡破壞與土顆粒流出機制之研究". 博士論文. 國立成功大學土木工程研究所, 台南.
[50]高嘉彬. (2009). "不飽和土壤邊坡基質吸力與位移之監測及滲流分析". 碩士論文. 國立台灣科技大學營建工程系, 台北.
論文全文使用權限:同意授權於2018-02-07起公開